• Title/Summary/Keyword: Network Embedding

Search Result 250, Processing Time 0.024 seconds

CR-M-SpanBERT: Multiple embedding-based DNN coreference resolution using self-attention SpanBERT

  • Joon-young Jung
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.35-47
    • /
    • 2024
  • This study introduces CR-M-SpanBERT, a coreference resolution (CR) model that utilizes multiple embedding-based span bidirectional encoder representations from transformers, for antecedent recognition in natural language (NL) text. Information extraction studies aimed to extract knowledge from NL text autonomously and cost-effectively. However, the extracted information may not represent knowledge accurately owing to the presence of ambiguous entities. Therefore, we propose a CR model that identifies mentions referring to the same entity in NL text. In the case of CR, it is necessary to understand both the syntax and semantics of the NL text simultaneously. Therefore, multiple embeddings are generated for CR, which can include syntactic and semantic information for each word. We evaluate the effectiveness of CR-M-SpanBERT by comparing it to a model that uses SpanBERT as the language model in CR studies. The results demonstrate that our proposed deep neural network model achieves high-recognition accuracy for extracting antecedents from NL text. Additionally, it requires fewer epochs to achieve an average F1 accuracy greater than 75% compared with the conventional SpanBERT approach.

Providing survivability for virtual networks against substrate network failure

  • Wang, Ying;Chen, Qingyun;Li, Wenjing;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4023-4043
    • /
    • 2016
  • Network virtualization has been regarded as a core attribute of the Future Internet. In a network virtualization environment (NVE), multiple heterogeneous virtual networks can coexist on a shared substrate network. Thus, a substrate network failure may affect multiple virtual networks. In this case, it is increasingly critical to provide survivability for the virtual networks against the substrate network failures. Previous research focused on mechanisms that ensure the resilience of the virtual network. However, the resource efficiency is still important to make the mapping scheme practical. In this paper, we study the survivable virtual network embedding mechanisms against substrate link and node failure from the perspective of improving the resource efficiency. For substrate link survivability, we propose a load-balancing and re-configuration strategy to improve the acceptance ratio and bandwidth utilization ratio. For substrate node survivability, we develop a minimum cost heuristic based on a divided network model and a backup resource cost model, which can both satisfy the location constraints of virtual node and increase the sharing degree of the backup resources. Simulations are conducted to evaluate the performance of the solutions. The proposed load balancing and re-configuration strategy for substrate link survivability outperforms other approaches in terms of acceptance ratio and bandwidth utilization ratio. And the proposed minimum cost heuristic for substrate node survivability gets a good performance in term of acceptance ratio.

Graph Neural Network and Reinforcement Learning based Optimal VNE Method in 5G and B5G Networks (5G 및 B5G 네트워크에서 그래프 신경망 및 강화학습 기반 최적의 VNE 기법)

  • Seok-Woo Park;Kang-Hyun Moon;Kyung-Taek Chung;In-Ho Ra
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.113-124
    • /
    • 2023
  • With the advent of 5G and B5G (Beyond 5G) networks, network virtualization technology that can overcome the limitations of existing networks is attracting attention. The purpose of network virtualization is to provide solutions for efficient network resource utilization and various services. Existing heuristic-based VNE (Virtual Network Embedding) techniques have been studied, but the flexibility is limited. Therefore, in this paper, we propose a GNN-based network slicing classification scheme to meet various service requirements and a RL-based VNE scheme for optimal resource allocation. The proposed method performs optimal VNE using an Actor-Critic network. Finally, to evaluate the performance of the proposed technique, we compare it with Node Rank, MCST-VNE, and GCN-VNE techniques. Through performance analysis, it was shown that the GNN and RL-based VNE techniques are better than the existing techniques in terms of acceptance rate and resource efficiency.

Class Language Model based on Word Embedding and POS Tagging (워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구)

  • Chung, Euisok;Park, Jeon-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.315-319
    • /
    • 2016
  • Recurrent neural network based language models (RNN LM) have shown improved results in language model researches. The RNN LMs are limited to post processing sessions, such as the N-best rescoring step of the wFST based speech recognition. However, it has considerable vocabulary problems that require large computing powers for the LM training. In this paper, we try to find the 1st pass N-gram model using word embedding, which is the simplified deep neural network. The class based language model (LM) can be a way to approach to this issue. We have built class based vocabulary through word embedding, by combining the class LM with word N-gram LM to evaluate the performance of LMs. In addition, we propose that part-of-speech (POS) tagging based LM shows an improvement of perplexity in all types of the LM tests.

Long Short Term Memory based Political Polarity Analysis in Cyber Public Sphere

  • Kang, Hyeon;Kang, Dae-Ki
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.57-62
    • /
    • 2017
  • In this paper, we applied long short term memory(LSTM) for classifying political polarity in cyber public sphere. The data collected from the cyber public sphere is transformed into word corpus data through word embedding. Based on this word corpus data, we train recurrent neural network (RNN) which is connected by LSTM's. Softmax function is applied at the output of the RNN. We conducted our proposed system to obtain experimental results, and we will enhance our proposed system by refining LSTM in our system.

패턴분류와 임베딩 차원을 이용한 단기부하예측

  • Choe, Jae-Gyun;Jo, In-Ho;Park, Jong-Geun;Kim, Gwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1144-1148
    • /
    • 1997
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time. For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor mentioned above. The one day ahead forecast errors are about 1.4% for absolute percentage average error.

  • PDF

A Daily Maximum Load Forecasting System Using Chaotic Time Series (Chaos를 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.578-580
    • /
    • 1995
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time, For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor font mentioned above. The one day ahead forecast errors are about 1.4% of absolute percentage average error.

  • PDF

Context-sensitive Spelling Error Correction using Feed-Forward Neural Network (Feed-Forward Neural Network를 이용한 문맥의존 철자오류 교정)

  • Hwang, Hyunsun;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.124-128
    • /
    • 2015
  • 문맥의존 철자오류는 해당 단어만 봤을 때에는 오류가 아니지만 문맥상으로는 오류인 문제를 말한다. 이러한 문제를 해결하기 위해서는 문맥정보를 보아야 하지만, 형태소 분석 단계에서는 자세한 문맥 정보를 보기 어렵다. 본 논문에서는 형태소 분석 정보만을 이용한 철자오류 수정을 위한 문맥으로 사전훈련(pre-training)된 단어 표현(Word Embedding)를 사용하고, 기존의 기계학습 알고리즘보다 좋다고 알려진 딥 러닝(Deep Learning) 기술을 적용한 시스템을 제안한다. 실험결과, 기존의 기계학습 알고리즘인 Structural SVM보다 높은 F1-measure 91.61 ~ 98.05%의 성능을 보였다.

  • PDF

A short-term Load Forecasting Using Chaotic Time Series (Chaos특성을 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.835-837
    • /
    • 1996
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network(Back-propagation) is proposed. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time. For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor mentioned above. The one day ahead forecast errors are about 1.4% for absolute percentage average error.

  • PDF

Reversible Multipurpose Watermarking Algorithm Using ResNet and Perceptual Hashing

  • Mingfang Jiang;Hengfu Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.756-766
    • /
    • 2023
  • To effectively track the illegal use of digital images and maintain the security of digital image communication on the Internet, this paper proposes a reversible multipurpose image watermarking algorithm based on a deep residual network (ResNet) and perceptual hashing (also called MWR). The algorithm first combines perceptual image hashing to generate a digital fingerprint that depends on the user's identity information and image characteristics. Then it embeds the removable visible watermark and digital fingerprint in two different regions of the orthogonal separation of the image. The embedding strength of the digital fingerprint is computed using ResNet. Because of the embedding of the removable visible watermark, the conflict between the copyright notice and the user's browsing is balanced. Moreover, image authentication and traitor tracking are realized through digital fingerprint insertion. The experiments show that the scheme has good visual transparency and watermark visibility. The use of chaotic mapping in the visible watermark insertion process enhances the security of the multipurpose watermark scheme, and unauthorized users without correct keys cannot effectively remove the visible watermark.