• Title/Summary/Keyword: Network Embedding

Search Result 250, Processing Time 0.027 seconds

A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction (Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Seo, Jinny
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.73-95
    • /
    • 2021
  • This study uses Node2vec graph embedding method and Light GBM link prediction to explore undeveloped export candidate countries in Korea's food and beverage industry. Node2vec is the method that improves the limit of the structural equivalence representation of the network, which is known to be relatively weak compared to the existing link prediction method based on the number of common neighbors of the network. Therefore, the method is known to show excellent performance in both community detection and structural equivalence of the network. The vector value obtained by embedding the network in this way operates under the condition of a constant length from an arbitrarily designated starting point node. Therefore, it has the advantage that it is easy to apply the sequence of nodes as an input value to the model for downstream tasks such as Logistic Regression, Support Vector Machine, and Random Forest. Based on these features of the Node2vec graph embedding method, this study applied the above method to the international trade information of the Korean food and beverage industry. Through this, we intend to contribute to creating the effect of extensive margin diversification in Korea in the global value chain relationship of the industry. The optimal predictive model derived from the results of this study recorded a precision of 0.95 and a recall of 0.79, and an F1 score of 0.86, showing excellent performance. This performance was shown to be superior to that of the binary classifier based on Logistic Regression set as the baseline model. In the baseline model, a precision of 0.95 and a recall of 0.73 were recorded, and an F1 score of 0.83 was recorded. In addition, the light GBM-based optimal prediction model derived from this study showed superior performance than the link prediction model of previous studies, which is set as a benchmarking model in this study. The predictive model of the previous study recorded only a recall rate of 0.75, but the proposed model of this study showed better performance which recall rate is 0.79. The difference in the performance of the prediction results between benchmarking model and this study model is due to the model learning strategy. In this study, groups were classified by the trade value scale, and prediction models were trained differently for these groups. Specific methods are (1) a method of randomly masking and learning a model for all trades without setting specific conditions for trade value, (2) arbitrarily masking a part of the trades with an average trade value or higher and using the model method, and (3) a method of arbitrarily masking some of the trades with the top 25% or higher trade value and learning the model. As a result of the experiment, it was confirmed that the performance of the model trained by randomly masking some of the trades with the above-average trade value in this method was the best and appeared stably. It was found that most of the results of potential export candidates for Korea derived through the above model appeared appropriate through additional investigation. Combining the above, this study could suggest the practical utility of the link prediction method applying Node2vec and Light GBM. In addition, useful implications could be derived for weight update strategies that can perform better link prediction while training the model. On the other hand, this study also has policy utility because it is applied to trade transactions that have not been performed much in the research related to link prediction based on graph embedding. The results of this study support a rapid response to changes in the global value chain such as the recent US-China trade conflict or Japan's export regulations, and I think that it has sufficient usefulness as a tool for policy decision-making.

BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map (Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류)

  • Bu, Seok-Jun;Moon, Se-Min;Cho, Sung-Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).

Improved Sensor Filtering Method for Sensor Registry System (센서 레지스트리 시스템을 위한 개선된 센서 필터링 기법)

  • Chen, Haotian;Jung, Hyunjun;Lee, Sukhoon;On, Byung-Won;Jeong, Dongwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.7-14
    • /
    • 2022
  • Sensor Registry System (SRS) has been devised for maintaining semantic interoperability of data on heterogeneous sensor networks. SRS measures the connectability of the mobile device to ambient sensors based on positions and only provides metadata of sensors that may be successfully connected. The step of identifying the ambient sensors which can be successfully connected is called sensor filtering. Improving the performance of sensor filtering is one of the core issues of SRS research. In reality, GPS sometimes shows the wrong position and thus leads to failed sensor filtering. Therefore, this paper proposes a new sensor filtering strategy using geographical embedding and neural network-based path prediction. This paper also evaluates the service provision rate with the Monte Carlo approach. The empirical study shows that the proposed method can compensate for position abnormalities and is an effective model for sensor filtering in SRS.

Predicate Recognition Method using BiLSTM Model and Morpheme Features (BiLSTM 모델과 형태소 자질을 이용한 서술어 인식 방법)

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.24-29
    • /
    • 2022
  • Semantic role labeling task used in various natural language processing fields, such as information extraction and question answering systems, is the task of identifying the arugments for a given sentence and predicate. Predicate used as semantic role labeling input are extracted using lexical analysis results such as POS-tagging, but the problem is that predicate can't extract all linguistic patterns because predicate in korean language has various patterns, depending on the meaning of sentence. In this paper, we propose a korean predicate recognition method using neural network model with pre-trained embedding models and lexical features. The experiments compare the performance on the hyper parameters of models and with or without the use of embedding models and lexical features. As a result, we confirm that the performance of the proposed neural network model was 92.63%.

Extraction of Protein-Protein Interactions based on Convolutional Neural Network (CNN) (Convolutional Neural Network (CNN) 기반의 단백질 간 상호 작용 추출)

  • Choi, Sung-Pil
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2017
  • In this paper, we propose a revised Deep Convolutional Neural Network (DCNN) model to extract Protein-Protein Interaction (PPIs) from the scientific literature. The proposed method has the merit of improving performance by applying various global features in addition to the simple lexical features used in conventional relation extraction approaches. In the experiments using AIMed, which is the most famous collection used for PPI extraction, the proposed model shows state-of-the art scores (78.0 F-score) revealing the best performance so far in this domain. Also, the paper shows that, without conducting feature engineering using complicated language processing, convolutional neural networks with embedding can achieve superior PPIE performance.

The implementation of home-server for intelligent Personal Video Recorder (지능형 PVR의 원격제어를 위한 홈 서버 구현)

  • Son, Kang-Sun;Oh, Young-Ho;Kim, Dae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.414-416
    • /
    • 2004
  • The intelligent PVR(Personal Video Recorder) is an enhanced PVR that provides viewers with some advanced features as well as pause, instant replay, search and skip forward found in conventional PVRs. By embedding a home server into a PVR, it is possible for an intelligent PVR to provide a powerful web-based management user interface constructed using HTML, graphics and other features common to web-browsers. When applied to other embedded systems, web technologies offer graphical user interfaces which are user-friendly, inexpensive, cross-platform and network-ready. It is the purpose of this paper to introduce implementation of intelligent PVR which is control by internet. We present the architecture of an home- server with a simple but powerful web-based network interconnection.

  • PDF

Finding Meaningful Pattern of Key Words in IIE Transactions Using Text Mining (텍스트마이닝을 활용한 산업공학 학술지의 논문 주제어간 연관관계 연구)

  • Cho, Su-Gon;Kim, Seoung-Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • Identification of meaningful patterns and trends in large volumes of text data is an important task in various research areas. In the present study we crawled the keywords from the abstracts in IIE Transactions, one of the representative journals in the field of Industrial Engineering from 1969 to 2011. We applied low-dimensional embedding method, clustering analysis, association rule, and social network analysis to find meaningful associative patterns of key words frequently appeared in the paper.

Similar Patterns for Semi-blind Watermarking

  • Cho, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.251-255
    • /
    • 2004
  • In this paper, we present a watermarking scheme based on the DWT (Discrete Wavelet Transform) and the ANN (Artificial Neural Network) to ensure the copyright protection of the digital images. The problem to embed watermark is not clear to select important coefficient in the watermarking. We used the RBF (Radial-Basis Function) to solve the problem. We didn't apply the whole wavelet coefficients, but applied to only the wavelet coefficients in the selected node. Using the ANN, although even the watermark casting process and watermark verification process are in public, nobody knows the location of embedding watermark except of authorized user. As the result, the watermark is good at the strength test-filtering, geometric transform and etc.

Lightweight End-to-End Blockchain for IoT Applications

  • Lee, Seungcheol;Lee, Jaehyun;Hong, Sengphil;Kim, Jae-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3224-3242
    • /
    • 2020
  • Internet of Things (IoT) networks composed of a large number of sensors and actuators generate a huge volume of data and control commands, which should be enforced by strong data reliability. The end-to-end data reliability of IoT networks is an essential industrial enabler. Blockchain technology can provide strong data reliability and integrity within IoT networks. We designed a lightweight end-to-end blockchain network that applies to common IoT applications. Its enhanced modular architecture and lightweight consensus mechanism guarantee its practical applicability for general IoT applications. In addition, the proposed blockchain network is highly software compatible because it adopts the Hyperledger development environment. Directly embedding the proposed blockchain middleware platform in small computing devices proves its practicability.

A Data Hiding Scheme Based on Turtle-shell for AMBTC Compressed Images

  • Lee, Chin-Feng;Chang, Chin-Chen;Li, Guan-Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2554-2575
    • /
    • 2020
  • Data hiding technology hides secret information into the carrier, so that when the carrier is transmitted over network, it will not attract any malicious attention. Using data compression, it is possible to reduce the data size into a small compressed code, which can effectively reduce the time when transmitting compressed code on the network. In this paper, the main objective is to effectively combine these two technologies. We designed a data hiding scheme based on two techniques which are turtle-shell information hiding scheme and absolute moment block truncation coding. The experimental results showed that the proposed scheme provided higher embedding capacity and better image quality than other hiding schemes which were based on absolute moment block truncation coding.