• Title/Summary/Keyword: Network Embedding

Search Result 250, Processing Time 0.038 seconds

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

Deep Learning Framework for Watermark-Adaptive and Resolution-Adaptive Image Watermarking (워터마크 및 해상도 적응적인 영상 워터마킹을 위한 딥 러닝 프레임워크)

  • Lee, Jae-Eun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.166-175
    • /
    • 2020
  • Recently, application fields for processing and using digital image contents in various forms and types are rapidly increasing. Since image content is high value-added content, the intellectual property rights of this content must be protected in order to activate the production and use of the digital image content. In this paper, we propose a deep learning based watermark embedding and extraction network. The proposed method is to maximize the robustness of the watermark against malicious/non-malicious attacks while preserving the invisibility of the host image. This network consists of a preprocessing network that changes the watermark to have the same resolution as the host image, a watermark embedding network that embeds watermark data while maintaining the resolution of the host image by three-dimensionally concatenating the changed host image and the watermark information, and a watermark extraction network that reduces the resolution and extracts watermarks. This network verifies the invisibility and robustness of the proposed method by experimenting with various pixel value change attacks and geometric attacks against various watermark data and host images with various resolutions, and shows that this method is universal and practical.

Improved Sliding Shapes for Instance Segmentation of Amodal 3D Object

  • Lin, Jinhua;Yao, Yu;Wang, Yanjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5555-5567
    • /
    • 2018
  • State-of-art instance segmentation networks are successful at generating 2D segmentation mask for region proposals with highest classification score, yet 3D object segmentation task is limited to geocentric embedding or detector of Sliding Shapes. To this end, we propose an amodal 3D instance segmentation network called A3IS-CNN, which extends the detector of Deep Sliding Shapes to amodal 3D instance segmentation by adding a new branch of 3D ConvNet called A3IS-branch. The A3IS-branch which takes 3D amodal ROI as input and 3D semantic instances as output is a fully convolution network(FCN) sharing convolutional layers with existing 3d RPN which takes 3D scene as input and 3D amodal proposals as output. For two branches share computation with each other, our 3D instance segmentation network adds only a small overhead of 0.25 fps to Deep Sliding Shapes, trading off accurate detection and point-to-point segmentation of instances. Experiments show that our 3D instance segmentation network achieves at least 10% to 50% improvement over the state-of-art network in running time, and outperforms the state-of-art 3D detectors by at least 16.1 AP.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

An Embedding of Multiple Edge-Disjoint Hamiltonian Cycles on Enhanced Pyramid Graphs

  • Chang, Jung-Hwan
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.75-84
    • /
    • 2011
  • The enhanced pyramid graph was recently proposed as an interconnection network model in parallel processing for maximizing regularity in pyramid networks. We prove that there are two edge-disjoint Hamiltonian cycles in the enhanced pyramid networks. This investigation demonstrates its superior property in edge fault tolerance. This result is optimal in the sense that the minimum degree of the graph is only four.

Evaluation of Directed Network Embedding Methods (최신 방향 네트워크 임베딩 방법들의 성능 평가)

  • Yoo, Hyunsik;Lee, Yeon-Chang;Kim, Sang-Wook
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.377-378
    • /
    • 2021
  • 방향 네트워크 임베딩 문제는 주어진 방향 네트워크의 노드들을 그들 간의 비대칭 관계를 보존할 수 있는 저 차원 벡터들로 표현하는 것이다. 최근, 이 문제에 대한 다양한 방법들이 제안되어왔다. 본 논문에서 우리는 네 가지 실세계 방향 네트워크 데이터셋와 세 가지 에지 예측 시나리오를 이용한 실험을 통해, 최신 방향 네트워크 임베딩 방법들의 성능을 종합적으로 비교 분석한다.

Web Attack Classification Model Based on Payload Embedding Pre-Training (페이로드 임베딩 사전학습 기반의 웹 공격 분류 모델)

  • Kim, Yeonsu;Ko, Younghun;Euom, Ieckchae;Kim, Kyungbaek
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.669-677
    • /
    • 2020
  • As the number of Internet users exploded, attacks on the web increased. In addition, the attack patterns have been diversified to bypass existing defense techniques. Traditional web firewalls are difficult to detect attacks of unknown patterns.Therefore, the method of detecting abnormal behavior by artificial intelligence has been studied as an alternative. Specifically, attempts have been made to apply natural language processing techniques because the type of script or query being exploited consists of text. However, because there are many unknown words in scripts and queries, natural language processing requires a different approach. In this paper, we propose a new classification model which uses byte pair encoding (BPE) technology to learn the embedding vector, that is often used for web attack payloads, and uses an attention mechanism-based Bi-GRU neural network to extract a set of tokens that learn their order and importance. For major web attacks such as SQL injection, cross-site scripting, and command injection attacks, the accuracy of the proposed classification method is about 0.9990 and its accuracy outperforms the model suggested in the previous study.

Utilizing Spatial-data to Provide for U-Service Based on U-GIS

  • Lee, Seok-Ho;Lee, Ji-Yeong;Kim, Hyong-Bok
    • Spatial Information Research
    • /
    • v.17 no.4
    • /
    • pp.405-416
    • /
    • 2009
  • According to the changes of the city's paradigm, the demand on u-City increases rapidly. u-City has been built at 54 areas in Korea (as of May 2009). One of the important determinants of success or failure in the increasing of u-City is how to provide u-Services. Most current u-Services are Sensor Network-based monitoring services to manage urban infrastructure. u-GIS is one of fundamental requirements to implement 'any time and any where' u-Service which covers the essential meaningful term "ubiquitous". Hence, in this paper, we 1) describe the definition of the spatial awareness, 2) discuss how to converge (Spatial Embedding) among different spatial data : topographic spatial data, sensor spatial data, and more, 3) bring forth an advanced form of u-Service, 4) analyze the state-of-the-art u-GIS techniques.

  • PDF

Quantitative and Qualitative Considerations to Apply Methods for Identifying Content Relevance between Knowledge Into Managing Knowledge Service (지식 간 내용적 연관성 파악 기법의 지식 서비스 관리 접목을 위한 정량적/정성적 고려사항 검토)

  • Yoo, Keedong
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.119-132
    • /
    • 2021
  • Identification of associated knowledge based on content relevance is a fundamental functionality in managing service and security of core knowledge. This study compares the performance of methods to identify associated knowledge based on content relevance, i.e., the associated document network composition performance of keyword-based and word-embedding approach, to examine which method exhibits superior performance in terms of quantitative and qualitative perspectives. As a result, the keyword-based approach showed superior performance in core document identification and semantic information representation, while the word embedding approach showed superior performance in F1-Score and Accuracy, association intensity representation, and large-volume document processing. This study can be utilized for more realistic associated knowledge service management, reflecting the needs of companies and users.

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정 : 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.365-373
    • /
    • 1999
  • Recently, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as a model construction process. Irrespective of the efficiency of a learning procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network models. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF