• Title/Summary/Keyword: Network Embedding

Search Result 250, Processing Time 0.033 seconds

Embedding between a Macro-Star Graph and a Matrix Star Graph (매크로-스타 그래프와 행렬 스타 그래프 사이의 임베딩)

  • Lee, Hyeong-Ok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.571-579
    • /
    • 1999
  • A Macro-Star graph which has a star graph as a basic module has node symmetry, maximum fault tolerance, and hierarchical decomposition property. And, it is an interconnection network which improves a network cost against a star graph. A matrix star graph also has such good properties of a Macro-Star graph and is an interconnection network which has a lower network cost than a Maco-Star graph. In this paper, we propose a method to embed between a Macro-Star graph and a matrix star graph. We show that a Macro-Star graph MS(k, n) can be embedded into a matrix star graph MS\ulcorner with dilation 2. In addition, we show that a matrix star graph MS\ulcorner can be embedded into a Macro-Star graph MS(k,n+1) with dilation 4 and average dilation 3 or less as well. This result means that several algorithms developed in a star graph can be simulated in a matrix star graph with constant cost.

  • PDF

A semi-automatic cell type annotation method for single-cell RNA sequencing dataset

  • Kim, Wan;Yoon, Sung Min;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.26.1-26.6
    • /
    • 2020
  • Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.

A Component-Based Framework for Structural Embedding of Mobile Agent System (모바일 에이전트 시스템의 구성적 임베딩을 위한 컴포넌트 기반의 프레임워크)

  • Chung, Wonho;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.33-42
    • /
    • 2012
  • Rapid evolution of wired and wireless technologies results in various types of embedded systems, and the software to be embedded into those devices now needs the flexibility rather than the fixedness which was well-known property for the embedded software in the past. Mobile agent is one of the useful distributed technologies of reducing network load and latency because of its disconnected operations and high asynchrony. In this paper, a component-based mobile agent framework, called EmHUMAN, is designed and implemented for structural embedding into the devices showing different functions and resource constraints. It consists of 3 layers of components. Based on those components, a structural embedding, considering resource constraints of required functions, amount of storage space, computing power, network bandwidth, ${\ldots} $ etc can be performed. The components in each layer can be extended with addition of new components, removing some components and modifying components. EmHUMAN plays the role of a framework for developing mobile agent based distributed systems. It is also a mobile agent system by itself. EmHUMAN provides several utilities as built-in API's, and thus high effectiveness in programming mobile agents can be achieved.

Pairwise Neural Networks for Predicting Compound-Protein Interaction (약물-표적 단백질 연관관계 예측모델을 위한 쌍 기반 뉴럴네트워크)

  • Lee, Munhwan;Kim, Eunghee;Kim, Hong-Gee
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.299-314
    • /
    • 2017
  • Predicting compound-protein interactions in-silico is significant for the drug discovery. In this paper, we propose an scalable machine learning model to predict compound-protein interaction. The key idea of this scalable machine learning model is the architecture of pairwise neural network model and feature embedding method from the raw data, especially for protein. This method automatically extracts the features without additional knowledge of compound and protein. Also, the pairwise architecture elevate the expressiveness and compact dimension of feature by preventing biased learning from occurring due to the dimension and type of features. Through the 5-fold cross validation results on large scale database show that pairwise neural network improves the performance of predicting compound-protein interaction compared to previous prediction models.

Implementation of Face Recognition Pipeline Model using Caffe (Caffe를 이용한 얼굴 인식 파이프라인 모델 구현)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.430-437
    • /
    • 2020
  • The proposed model implements a model that improves the face prediction rate and recognition rate through learning with an artificial neural network using face detection, landmark and face recognition algorithms. After landmarking in the face images of a specific person, the proposed model use the previously learned Caffe model to extract face detection and embedding vector 128D. The learning is learned by building machine learning algorithms such as support vector machine (SVM) and deep neural network (DNN). Face recognition is tested with a face image different from the learned figure using the learned model. As a result of the experiment, the result of learning with DNN rather than SVM showed better prediction rate and recognition rate. However, when the hidden layer of DNN is increased, the prediction rate increases but the recognition rate decreases. This is judged as overfitting caused by a small number of objects to be recognized. As a result of learning by adding a clear face image to the proposed model, it is confirmed that the result of high prediction rate and recognition rate can be obtained. This research will be able to obtain better recognition and prediction rates through effective deep learning establishment by utilizing more face image data.

Embedding Mechanism between Pancake and Star, Macro-star Graph (팬케익 그래프와 스타(Star) 그래프, 매크로-스타(Macro-star) 그래프간의 임베딩 방법)

  • 최은복;이형옥
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.556-564
    • /
    • 2003
  • A Star and Pancake graph also have such a good property of a hypercube and have a low network cost than the hypercube. A Macro-star graph which has the star graph as a basic module has the node symmetry, the maximum fault tolerance, and the hierarchical decomposition property. And, it is an interconnection network which improves the network cost against the Star graph. In this paper, we propose a method to embed between Star graph, Pancake graph, and Macro-star graph using the edge definition of graphs. We prove that the Star graph $S_n$ can be embedded into Pancake graph $P_n$ with dilation 4, and Macro-star graph MS(2,n) can be embedded into Pancake graph $P_{2n+1}$ with dilation 4. Also, we have a result that the embedding cost, a Pancake graph can be embedded into Star and Macro-star graph, is O(n).

  • PDF

Technology-Focused Business Diversification Support Methodology Using Item Network (아이템 네트워크를 활용한 기술 중심 사업 다각화 기회 탐색 지원 방법론)

  • Bae, Kukjin;Kim, Ji-Eun;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.19 no.3
    • /
    • pp.17-34
    • /
    • 2020
  • Recently, various attempts have been made to discover promising items and technologies. However, there are very few data-driven approaches to support business diversification by companies with specific technologies. Therefore, there is a need for a methodology that can detect items related to a specific technology and recommend highly marketable items among them as business diversification targets. In this paper, we devise Labeled Item Network for Business Diversification Consulting Support System. Our research is performed with three sub-studies. In Sub-study 1, we find the proper source documents to build the item network and construct item dictionary. In Sub-study 2, we derive the Labeled Item Network and devise four index for item evaluation. Finally, we introduce the application scenario of our methodology and describe the result of real-case analysis in Sub-study 3. The Labeled Item Network, one of the main outcome of this study, can identify the relationships between items as well as the meaning of the relationship. We expect that more specific business item diversification opportunities can be found with the Labeled Item Network. The proposed methodology can help many SMEs diversify their business on the basis of their technology.

Exploring Teaching Method for Productive Knowledge of Scientific Concept Words through Science Textbook Quantitative Analysis (과학교과서 텍스트의 계량적 분석을 이용한 과학 개념어의 생산적 지식 교육 방안 탐색)

  • Yun, Eunjeong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.41-50
    • /
    • 2020
  • Looking at the understanding of scientific concepts from a linguistic perspective, it is very important for students to develop a deep and sophisticated understanding of words used in scientific concept as well as the ability to use them correctly. This study intends to provide the basis for productive knowledge education of scientific words by noting that the foundation of productive knowledge teaching on scientific words is not well established, and by exploring ways to teach the relationship among words that constitute scientific concept in a productive and effective manner. To this end, we extracted the relationship among the words that make up the scientific concept from the text of science textbook by using quantitative text analysis methods, second, qualitatively examined the meaning of the word relationship extracted as a result of each method, and third, we proposed a writing activity method to help improve the productive knowledge of scientific concept words. We analyzed the text of the "Force and motion" unit on first grade science textbook by using four methods of quantitative linguistic analysis: word cluster, co-occurrence, text network analysis, and word-embedding. As results, this study suggests four writing activities, completing sentence activity by using the result of word cluster analysis, filling the blanks activity by using the result of co-occurrence analysis, material-oriented writing activities by using the result of text network analysis, and finally we made a list of important words by using the result of word embedding.

Analysis of Various Characteristics of the Half Pancake Graph (하프팬케익 그래프의 다양한 성질 분석)

  • Seo, Jung-Hyun;Lee, HyeongOk
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.725-732
    • /
    • 2014
  • The Pancake graph is node symmetric and useful interconnection network in the field of data sorting algorithm. The Half Pancake graph is a new interconnection network that reduces the degree of the Pancake graph by approximately half and improves the network cost of the Pancake graph. In this paper, we analyze topological properties of the Half Pancake graph $HP_n$. Fist, we prove that $HP_n$ has maximally fault tolerance and recursive scalability. In addition, we show that in $HP_n$, there are isomorphic graphs of low-dimensional $HP_n$. Also, we propose that the Bubblesort $B_n$ can be embedded into Half Pancake $HP_n$ with dilation 5, expansion 1. These results mean that various algorithms designed for the Pancake graph and the Bubble sort graph can be executed on $HP_n$ efficiently.

Placement and Performance Analysis of I/O Resources for Torus Multicomputer (토러스 다중컴퓨터를 위한 입출력 자원의 배치와 성능 분석)

  • 안중석
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.2
    • /
    • pp.89-104
    • /
    • 1997
  • Performance bottleneck of parallel computer systems has mostly been I/O devices because of disparity between processor speed and I/O speed. Therefore I/O node placement strategy is required such that it can minimize the number of I/O nodes, I/O access time and I/O traffic in an interconnection network. In this paper, we propose an optimal distance-k embedding algorithm, and analyze its effect on system performance when this algorithm is applied to n x n torus architecture. We prove this algorithm is an efficient I/O node placement using software simulation. I/O node placement using the proposed algorithm shows the highest performance among other I/O node placements in all cases. It is because locations of I/O nodes are uniformly distributed in the whole network, resulting in reduced traffic in the intE'rconnection network.

  • PDF