• 제목/요약/키워드: Network Art

검색결과 761건 처리시간 0.039초

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

인지이론과 ART 신경회로망에 기반한 한글 문자 분류 모델 (Hangeul Character Classification Model Based on Cognitive Theory and ART Neural Network)

  • 박중양;박재흥;장재혁
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.33-42
    • /
    • 2005
  • 본 논문에서는 ART 신경회로망의 성능을 개선하기 위해, 불필요한 클러스터의 생성과 변화를 억제하여 효율적인 패턴 분류가 가능하도록 하는 학습 알고리즘을 제안한다. 또한, 패턴 분류의 정확성을 향상시키기 위해 한글의 구조적 특징을 이용한 위치추출 알고리즘을 적용하였다. 제안하는 학습 알고리즘은 현재 학습되는 패턴과 최초 패턴간의 일치도를 비교한 후 리세트 시스템을 작동케 한다. 그 결과, 신경회로 망은 이미 입력되었던 패턴이 다시 입력되어도 새로운 클러스터의 생성을 방지하여 오인식율을 줄이게 된다.

  • PDF

ART2 신경회로망을 이용한 밀링공정의 공구마모 진단 (Tool Wear Monitoring in Milling Operation Using ART2 Neural Network)

  • 윤선일;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.120-129
    • /
    • 1995
  • This study introduces a tool wear monitoring technology in face milling operation comprised of an unsupervised neural network. The monitoring system employs two types of sensor signal such as cutting force and acceleration in sensory detection state. The RMS value and band frequency energy of the sensor signals are calculated for te input patterns of neural network. ART2 neural network, which is capable of self organizing without supervised learning, is used for clustering of tool wear states. The experimental results show that tool wear can be effectively detected under various cutting conditions without prior knowledge of cutting processes.

  • PDF

퍼지 ART 신경망을 이용한 내용기반 영상검색 (Contents-based Image Retrieval using Fuzzy ART Neural Network)

  • 박상성;이만희;장동식;김재연
    • 융합신호처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.12-17
    • /
    • 2003
  • 본 논문은 퍼지 ART 신경망 알고리즘을 이용하여 내용기반 영상을 검색하는 연구를 제시한다. 대용량의 영상 데이터베이스를 검색할 때, 클러스터링은 빠른 검색을 위해 중요하다. 그러나 많은 양의 영상 데이터를 적절하게 클러스터링 하는 것은 상당히 어렵다. 기존의 유사도에 따른 검색 방법은 검색의 정확도가 떨어지고 검색시간이 많이 걸리는 단점이 있기 때문에 이러한 단점을 보완하는 방법이 필요하다. 본 논문에서는 앞서 언급한 문제점을 보완하기 위하여 신경망 알고리즘을 사용한 내용기반 영상검색 시스템을 제안한다. 퍼지 ART 신경망 알고리즘을 사용한 본 검색 시스템에서는 색상과 질감을 검색에 필요한 특징치로 잡아 데이터를 0과 1사이의 데이터로 정규화 하여 신경망 알고리즘의 입력 데이터로 넣어서 영상을 클러스터링 한 후 검색을 실시하였다 300개의 영상을 가지고 실험한 결과 약 87%의 검출률을 보여 주었다.

  • PDF

가스모니터링 시스템에서의 신경회로망 기반 센서고장진단 (Neural Network-Based Sensor Fault Diagnosis in the Gas Monitoring System)

  • 이인수;조정환;심창현;이덕동;전기준
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2004
  • 본 논문에서는 실내대기 가스모니터링 시스템에서의 센서 고장 진단을 위한 신경회로망 기반 고장진단방법을 제안한다. 제안한 고장진단 방법에서는 신호패턴추출을 위해 센서히터 온도조절방법을 이용하였으며, 분류를 위해서는 ART2 신경회로망을 이용하였다. 그리고 가스모니터링 시스템의 실제 데이터를 이용한 시뮬레이션을 통해 제안한 ART2 신경회로망 기반 센서고장진단방법의 성능과 유용성을 확인하였다.

Adaptive Resonance Theory 2를 이용한 네트워크 기반의 침입 탐지 모델 연구 (Network based Intrusion Detection System using Adaptive Resonance Theory 2)

  • 김진원;노태우;문종섭;고재영;최대식;한광택
    • 정보보호학회논문지
    • /
    • 제12권3호
    • /
    • pp.129-139
    • /
    • 2002
  • 인터넷의 확장에 따라서 네트워크를 통한 침입이 증가되고 있다. 이에 따라 네트워크를 통한 침입에 대하여 즉각적으로 탐지하고 대처하는 기술이 필요하게 되었다. 본 논문은 인터넷의 특성을 악용하여 침입하는 공격들을 탐지하기 위하여 Adaptive Resonance Theory2(ART2) 이론을 이용한다. 정상적인 packet과 여러 가지 공격툴을 사용하여 생산한 인위적인 공격 패킷에 대하여 ART2를 학습한 후 실험한 결과와 기존의 방식들과 비교 분석하였다.

Impact of Artificial Intelligence on the Development of Art Projects: Opportunities and Limitations

  • Zheng, Xiang;Xiong, Jinghao;Cao, Xiaoming;Nazarov, Y.V.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.343-347
    • /
    • 2022
  • To date, the use of artificial intelligence has already brought certain results in such areas of art as poetry, painting, and music. The development of AI and its application in the creative process opens up new perspectives, expanding the capabilities of authors and attracting a new audience. The purpose of the article is to analyze the essential, artistic, and technological limitations of AI art. The article discusses the methods of attracting AI to artistic practices, carried out a comparative analysis of the methods of using AI in visual art and in the process of writing music, identified typical features in the creative interaction of the author of a work of art with AI. The basic principles of working with AI have been determined based on the analysis of ways of using AI in visual art and music. The importance of neurobiology mechanisms in the course of working with AI has been determined. The authors conclude that art remains an area in which AI still cannot replace humans, but AI contributes to the further formation of methods for modifying and rethinking the data obtained into innovative art projects.

ART2 Neural Network Applications for Diagnosis of Sensor Fault in the Indoor Gas Monitoring System

  • Lee, In-Soo;Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, Duk-Dong;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1727-1731
    • /
    • 2004
  • We propose an ART2 neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, fault classifier by ART2 NN (adaptive resonance theory 2 neural network) with uneven vigilance parameters is used for fault isolation. The performances of the proposed fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.

ART2 기반 RBF 네트워크를 이용한 여권 인식 (Passports Recognition Using ART2-Based RBF Network)

  • 김광백;오암석
    • 한국멀티미디어학회논문지
    • /
    • 제8권5호
    • /
    • pp.700-706
    • /
    • 2005
  • 출입국 관리 시스템은 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하여 출입국자를 관리하고 있다. 이러한 출입국 관리 시스템은 위조 여권 판별이 중요하므로 위조 여권을 판별하는 전 단계로 ART2 기반 RBF네트워크를 제안하여 여권을 인식하는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 스미어링 그리고 윤곽선 추적 알고리즘을 이용하여 코드의 문자열 영역과 개별 코드의 문자를 추출한다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF네트워크를 제안하여 여권 인식에 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

  • PDF