• Title/Summary/Keyword: Net

Search Result 13,567, Processing Time 0.043 seconds

A Subclass of Petri Net with Reachability Equivalent to State Equation Satisfiability: Live Single Branch Petri Net

  • Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.200-207
    • /
    • 2013
  • Petri Nets are a system description and analysis tool. Reachability is one of the most basic properties in Petri Net research. In a sense, reachability research is the foundation study for other dynamic properties of Petri Nets through which many problems involving Petri Nets can be described. Nowadays, there are two mature analysis methods-the matrix equation and the reachability tree. However, both methods are localized, i.e., it is difficult to find a general algorithm that can determine reachability for an arbitrary Petri Net, especially an unbounded Petri Net. This paper proposes and proves three propositions in order to present a subclass of a Petri Net, the live single-branch Petri Net, whose reachability is equivalent to the satisfiability of the state equation.

The opening efficiency of the existent net of the anchovy boat seine (기선권현망 현용 어구의 전개 성능)

  • AN, Young-Su;BACK, Young-Su;JIN, Song-Han;JANG, Choong-Sik;KANG, Myoung-Hee;CHA, Bong-Jin;KIM, Bo-Yeon;CHA, Ju-Hyeng;CHO, Youn-Hyoung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • This study was conducted in order to improve fishing gear for existent net of the anchovy boat seine. Field experiments were performed to observe geometry of nets by catcher boats. When the distances between the two ships were 100, 300, and 500 m, and the speeds of towing nets were 0.6, 0.9, and 1.2 k't, respectively. The vertical opening and actual opening of each part of the existent net was as follows: the middle part of the wing net, 12.9-26.6 m, 19-39%; the entrance of the inside wing net, 23.3-35.3 m, 40-60%; the square and bosom, 18.4-24.2 m, 37-49%; the entrance of the bag net, 19.0-23.3 m, 79-96%; the flapper, 13.2-15.3 m, 142-161%; and the end of the bag net, 13.2-15.7 m, 51-61%. The actual net opening of each part of the existent nets used in this study was lower than that of the design net height, due to the low net height of the wing net and the inside wing net, it limited a range of the net height of the square and bosom. The opening of the entrance of the bag net caused the net pocket shape and inflated some parts of the nets. The tension of towing nets was measured between 4.4 and 11.0 tons, and it is necessary to reduce the structure and improve the structure of the bag net.

A study on the selectivity of the mesh size in trammel net for Cynoglossidae spp. (서대 3중자망의 망목 선택성에 관한 연구)

  • 조영복;박창두;이주희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.89-95
    • /
    • 2000
  • Test fishing was carried out to examine the selectivity of the mesh size in trammel net for tonguefish (Cynoglossidae spp.) from May to August, 1999 and a total of 30 times of test fishing have been done in the coastal waters around Dolsando, Yosu, South Chunra province, Korea. A gill net and a trammel net which were composed of three different mesh sizes (70.5mm, 86.6mm and 101mm) were used for the experiment. The selectivity curve of mesh size was estimated by Kitahara's method for Robust tonguefish (Cynoglossus robustus). The results obtained are summarized as follows ; 1. Catching efficiency of the trammel net (70.5mm-sized-lint main net) was 39.0% and it was 2.5 times higher than 15.8% for the gill net. 2. The optimum l/m value of the trammel net was 3.51 and it was 0.13 higher than 3.38 for the gill net. 3. The selectivity of trammel net was similar to that of the gill net for low length-class. However, the selectivity of trammel net was not good compared with that of the gill net for high length-class. The 50% selectivity was 1.33 for the trammel net and 0.83 for the gill net. According to the experimental results, fishing efficiency of the trammel net was better than that of the gill net for tonguefish (Cynoglossidae spp.) and it was known that catch length for targeted species could be selected by controlling the mesh size.

  • PDF

A model experiment on the underwater shape of deepsea bottom trawl net (심해 저층트롤망의 수중형상에 관한 모형실험)

  • Park, Gwang-Je;Lee, Ju-Hee;Kim, Hyung-Seok;Jeong, Sun-Beom;Oh, Taeg-Yun;Bae, Jae-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.134-147
    • /
    • 2006
  • A model experiment using circulation water channel was carried out to investigate the dynamic characteristics of bottom trawl net which can be used in sea mount of North Pacific. Hydrodynamic resistance and shape variation according to the flow velocity and angle of hand rope transformation for net were measured, and experimental value was analyzed as the value of full-scale bottom trawl net. The results summarized are as follows; At the $30^{\circ}$ of angle of hand rope to net, hydrodynamic resistance varied from 0.5kgf to 2.68kgf as the flow velocity increased between 0.31m/s and 0.92m/s, and formula of hydrodynamic resistance for the model net was $F_m=3.04\;{\cdot}\;{\upsilon}^{1.53}$. At the fixed angle of hand rope, Net height was low and Net width was high according to the increase of flow velocity, and in addition, vertical opening was low and Net width was high by the increase of angle of hand rope at the fixed flow velocity. At the $30^{\circ}$ of angle of hand rope to net, net opening area was $0.214m^2$ as flow velocity was 0.61m/s, and formula of net opening area for the model net was $S_m=-0.22{\upsilon}+0.35$. At the $30^{\circ}$ of angle of hand rope to net, catch efficiency seemed to be highest as $0.319m^3/s$ of filtering volume at the 0.76m/s(51kt's) of flow velocity. Shape variation of net showed the gradual laminar transform for the variation of flow velocity but there needed some improvements due to the occurrence of shortening at the ahead of wing net.

Improving of the Fishing Gear and Development of the Automatic Operation System in the Anchovy Boat Seine-III -Underwater Geometry of the Prototype Net- (기선권현망어업의 어구 개량과 자동화 조업시스템 개발-III - 실물어구의 수중형상 -)

  • 장충식;김용해;안영수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.267-274
    • /
    • 2001
  • A prototype experiment on the anchovy boat seine was carried out in the southern sea of korea to analyze the vertical opening and the underwater geometry. The vertical opening and the underwater geometry of the prototype net were determined by distance of Minilog position with the combinations of the distance between paired boats and the towing speed. The results osbtained can be summarized as follows; 1. Vertical opening of the protype net was gradually lowered according to the increase of the distance between paired beats and the towing speed. 2. Vertical opening of Wing net, Inside wing net, Square, Fore bag net, Flapper and After bag net of the prototype net according to the distance between paired boats were varied in the range of 8.4~9.0, 15.7~17.4, 12.9~17.9, 13.6~19.0, 8.3~8.4, 11.1~14.7m respectively, varied in the range of 12~16, 22~24, 27~38, 59~83, 92~93, 41~54% of the normal opening respectively. 3. Vertical opening of Wing net, In side wing net, Square, Fore bag net, Flapper and After bag net of the prototype net according to the towing speed were varied in the range of 7.7~10.5, 19.6~21.6, 12.2~16.9, 15.4~17.1, 8.0~8.2, 13.7~14.7m respectively, varied in the range of 14~19, 27~30, 32~36, 67~74, 89~91, 51~54% of the normal opening respectively. 4. Prototype net was appeared apparent the pocket shape, because Wing net and Inside wing net was opened 20% of the normal opening. 5. Working depth of the prototype net was gradually shallow according to the increase of the distance between paired boats and the towing speed.

  • PDF

Net Shapes of the Model Set Net in the Flow (흐름에 대한 모형 정치망의 형상 변화)

  • Kim, Boo-Young;Yun, Il-Bu;Kwon, Byeong-Guk;Lee, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.104-114
    • /
    • 2004
  • A study was carried out to estimate the deformation of the set net according to the current by the model test in the circulation water channel. The tension of the frame line and the variation of net shapes were measured to investigate the deforming of the model set net in the flow. The results are obtained as follows; 1. The tensions (y) of the frame line according to the flow speed(x) from 0.0m/s to 0.6m/s were expressed by the experimental equation as follow : y= 1814.1x+115.12 2. In case of the upperward flow with fish court net, deformed angle in the upperward net was changed from 0$^{\circ}$ to 79$^{\circ}$, the inclined passage net was from 0$^{\circ}$ to 56$^{\circ}$. Besides, the depth ratio of the first bag net changed from 1.0 to 0.42 and the second bag net was from 1.0 to 0.41, and deformed angle in the downward of the bag net was from 0$^{\circ}$ to 87$^{\circ}$. 3. In case of the upperward flow with bag net, deformed angle in the upperward net was changed from 0$^{\circ}$ to 60$^{\circ}$, the inclined passage net was from 0$^{\circ}$ to 13$^{\circ}$. Besides, the depth ratio of the first bag net changed from 1.0 to 0.27 and the second bag net was from 1.0 to 0.15. In the flow speed 0.3m/s, the inclined passage net rised up to the entry of the bag net and then prevented it more over 90% in 0.5m/s. A deformed angle in the downward of the fish court net was from 0$^{\circ}$ to 58$^{\circ}$. 4. To minimize the deformation of each part in model set net, it needs to attach the moving weight out of the fish court net, inclined passage net and bag net. Besides, it needs to adjust the tension of the net twine for the maintenance of the shape.

쌍끌이 중층트롤어법의 연구 ( 1 ) - 모형어구의 망구형상에 관하여 - ( A Study on the Pair Midwater Trawling ( 1 ) - Mouth Performance of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.29-44
    • /
    • 1995
  • A model experiment on the pair midwater trawl net applicable to 800 PS class Korean pair bottom trawlers was carried out in the special-prepared experimental thank. the tank was prepared as a reverse trapezoid shape in its vertical section by digging out flat soil. The dimension of the tank showed the 9.6 W$\times$43.0 L(m) of the upper fringe and the 4.8 W$\times$38.0 L(m) of the bottom with 3.0m in depth. The depth of water was maintained 2.7m during experiment. The model net was prepared based on the Tauti's similarity law of fishing gear in 1/30 scale considering the dimension of the experimental tank. Mouth performance of the model net during towing were determined by the photographs taken in front of the net mouth with the combinations of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Vertical opening of the model nets A and B was varied in the range of 0.18~0.88 m and 0.21~0.78 m (which can be converted into 5.4~26.4m and 6.3~23.4 m in the full-scale net) respectively, and was varied predominantly by towing speed. Vertical opening (H which is appendixed m for the model net. f for the full-scale net. A and B for the types of the model net) can be expressed as the function of towing velocity$V_t$as in the model net $V_t$ : m/ sec)$H_{mA}$=1.67$e^{-1.65V_t}$ $H_{mB}$=1.15$e^{-1.13V_t}$, in the full-scale net ($V_t$ : k't) $H_{fA}$=50.27$e^-0.37V_t$ $H_{fB}$=34.46$e^{-0.26Vt}$. 2. Horizontal opening of the model nets An and b was varied in the range of 1.03~1.54m and 1.04~1.55 m (which can be converted into 30.9~46.2 m and 31.2~46.5m in the full-scale net) respectively, and was varied predominantly by distance between paired boats. Horizontal opening (W, appendixes are as same as the former) an be expressed as the function of distance between paired boats $D_b$as in the model net $W_{mA}$=0.69+0.09$D_b$ $W{mB}$=0.73+0.09$D_b$, in the full-scale net $W_{fA}$=20.81+0.09$D_b$ $W_{fB}$=22.11+0.09$D_b$ 3. Net opening area of the model net A and B was varied in the range of 0.28~1.04 $m^2$ and 0.33~0.94$m^2$(which can be converted into 252~936$m^2$ and 297~846$m^2$ in the full-scale net) respectively, and was varied predominantly by towing velocity. Net opening area ($S$, appendixes are as same as the former) van be expressed as the function of towing velocity$V_t$ as in the model net $v_t$ : m/sec) $S_{Ma}$=2.01$e^{-1.54V_T}$ $S_{mA}$=1.40$e^{-1.65V_t}$, in the full-scale net ($V_t$ : k't) $S_{fA}$=1.807$e^-0.35V_t$ $S_{fA}$=1.265$e^{-0.24V_t}$. 4. Filtering volume of the model nets A and B was varied in the range of 0.32~0.55 $m^3$ and 0.37~0.55$m^3$(which can be converted into 8.640~14.850 $m^3$ and 9.990~14.850$m3$in the full~scale net) respectively, and was predominantly varied by towing speed. filtering volume of the model net-A showed the maximum at the towing speed 0.69 m/sec(3 k't in the full-scale net), compared with that of the model net B showed at 0.92 m/sec(4 k't in the full-scale net).

  • PDF

Improving of the Fishing Gear and Development of the Automatic Operation System in the Anchovy Boat Seine-I -Underwater Geometry of the Model Net- (기선권현망어업의 어구 개량과 자동화 조업시스템 개발-I -시험어구의 수중형상-)

  • 장충식;김용해;안영수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.299-308
    • /
    • 2000
  • A model experiment on the anchovy boat seine was carried out in the southern sea of korea to analyze the vertical opening and the underwater geometry. The model net A was made of half size in the length and width of the prototype net. The model net B was attached floats and chain to the model net-A. The vertical opening and the underwater geometry of the model net were determined by distance of Minilog position with the combinations of the distance between paired boats and the towing speed. The results obtained can be summarized as follows; 1. Vertical opening of the model net was gradually lowered according to the increase of the distance between paired beats and the towing speed. 2. Vertical opening of Wing net, In side wing net, Square, Fore bag net, Flapper and After bag net of the model net A according to the distance between paired boats were varied in the range of 10.8~9.0, 12.0~8.3, 12.6~9.0, 10.4~6.6, 4.6~5.2, 8.8~7.7m respectively, varied in the range of 36~30, 21~15, 31~22, 80~51, 80~96, 59~51% of the normal opening respectively 3. Vertical opening of Wing net, In side wing net, Square, Fore bag net, Flapper and After bag net of the model net B according to the distance between paired boats were varied in the range of 9.1~8.5, 9.8~6.5, 11.2~8.0, 11.0~8.1, 4.7~5.0, 7.0~7.5m respectively, varied in the range of 30~28, 18~12, 27~20, 85~62, 87~93, 47~50% of the normal opening respectively 4. Vertical opening of each a part of the model net according to the towing speed was as same as the former. 5. Model net was appeared apparent the pocket shape, because Wing net and Inside wing net was opened 30% of the normal opening. 6. The bosom and the bag net of the model net A were risen up to the upper lazer, this phenomenon was more apparent as the distance between paired boats and the towing speed increase, but the model net B was almost constant. 7. Working depth of the model net was gradually hallowed according to the increase of the distance between paired boats and the towing speed

  • PDF

Development of the Automatic Hauling Operation System by Three boats for Anchovy Boat Seine (기선권현망어업의 3척식 자동화 양망시스템 개발)

  • An, Young-Su;Jang, Choong-Sik;Lee, Myeong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.147-155
    • /
    • 2005
  • This study was conducted in order to improve the automatic fishing operation system for anchovy boat seine by comparison with the fishing gear geometry and efficiency using the labor saving nets and the combined type net with midwater trawl. Field experiments were carried out to observe the geometry of nets and improve the fishing operation system by catcher boats. The vertical net opening of fore wing net, square, fore bag net and after bag net of the combined type net were varied in the range of 9.9~12.9. 16.2~28.2, 6.8~12.1 and 9.5~15.2m respectively, when the towing speed was 1.0m/sec and the distance between boats were 100m, 200m, 300m. The vertical net opening of the combined type nets was gradually decreased as function of with increasing the distance between catcher boats. Labor saving net which was maintained the net opening and towing depth stable was more suitable for the automatic hauling operation system by improvement of bag net rather than the combined type nets which was impossible in swallow depth and near to anchovy school. 3 boats hauling operation system of the labor saving net was carried out by crane with power block in 2 catcher boats for improvement of hauling operation and pushing equipment of anchovy cooking system in the processing boat for maintain more anchovy in dry frame. From the results of field experiments, 3 boats hauling operation system with power block and improved cooking system was very 3 boats hauling operation system with power block and improved cooking system was very useful and more practical as hauling time 20~35min and No. of fishermen 12~13 in comparison with the traditional system such as hauling time 30~50 min and No. of fishmen 28~38.

Hydrodynamic Resistance of Some Trawl Nets Being Used by M/S Saebada (새바다호에서 사용하는 트로올그물의 유체저항에 관하여)

  • KIM Jin-Kun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • The author carried out an experiment to determine the resistance of trawl net aboard M/S Saebada, training ship of National Fisheries University of Pusan, 2,275 G/T and 3,600ps. Total tension loaded on warp were measured by the recording tension meter. Resistance of the net is estimated by subtracting the resistance of otter boards and warps from the total tension. Coefficient k and exponent n of the formula on the trawl net deduced by Koyama, $R_N=k\frac{d}{l}abv^n$ were calculated from the resistance of the net obtained. The results obtained are can be summarized as follows : 1. Six seamed net with two net pendant k=11, n=1.8 2. Eight seamed net with three net pendant k=11, n=1.8 3. Ten seamed net with three net pendant k=9, n=1.9 4. Ten seamed net with four net pendant k=9, n=1.9

  • PDF