• Title/Summary/Keyword: Nerve

Search Result 4,827, Processing Time 0.037 seconds

Anatomical studies on trigeminal nerve of Korean native goat (한국재래산양 삼차신경에 관한 해부학적 연구)

  • Shin, Nam-Shik;Lee, Heungshik S.;Lee, In-se;Kang, Tae-Cheon;Kim, Jin-sang;Lee, Jong-Hwan;Seo, Jehoon
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.474-487
    • /
    • 1998
  • The present study was undertaken to investigate the morphological characteristics of trigeminal nerve in the Korean native goat by macroscopic methods. Trigeminal nerve was originated from the lateral side of pons, and extended shortly forward to form trigeminal ganglion at the opening of oval foramen. Thereafter this nerve was divided into maxillary, mandibular and ophthalmic nerve. Ophthalmic nerve gave off the zygomaticotemporal branch, frontal nerve, frontal sinus branch, and was continued as the nasociliary nerve. Maxillary nerve gave rise to the zygomaticofacial branch, accessory zygomaticofacial branch, communicating branch with oculomotor nerve, pterygopalatine nerve, caudal superior alveolar branch, malar branch and was continued as the infraorbital nerve. Mandibular nerve was divided into the masseteric nerve, buccal nerve, lateral pterygoid nerve, medial pterygoid nerve, nerve to tensor tympani m., auriculotemporal nerve, and furnished the inferior alveolar nerve and lingual nerve as terminal branches. The course and distribution of the trigeminal nerve in the Korean native goat appeared to be similar to that in other small ruminants such as sheep and goat. But the main differences from other small ruminants were as follows : 1. There was no accessory branch of the major palatine nerve. 2. The caudal superior alveolar branch was directly branched from the maxillary nerve. 3. The communicating branch with oculomotor nerve was originated from maxillary nerve or common trunk with zygomaticofacial branch. 4. The malar branch arose from the maxillary nerve at the rostral to the origin of the caudal superior alveolar branch. 5. The inferior alveolar nerve originated in a common trunk with the lingual nerve. 6. The mylohyoid nerve arose at the origin of the inferior alveolar nerve. 7. The zygomaticotemporal branch was single fascicle, and gave off lacrimal nerve and cornual branch. 8. The base of horn was provided by the cornual branches of zygomaticotemporal branch and infratrochlear nerve of nasociliary nerve.

  • PDF

Peripheral Nerve Regeneration After Various Conditioned Side to Side Neurorrhaphy in Rats (말초신경 손상 후 측측문합을 이용한 신경이식시 신경이식의 수에 따른 신경재생 및 근육 기능 회복에 관한 비교 연구)

  • Kim, Sug-Won;Chung, Yoon-Kyu;Kang, Sang-Yoon;Cho, Pil-Dong
    • Archives of Reconstructive Microsurgery
    • /
    • v.10 no.1
    • /
    • pp.12-17
    • /
    • 2001
  • Recovery of nerve injury is conditioned by various factors including physical state, injured site, cause of injury, and neurorrhaphy Many researchers have reported on regeneration of nerve using end to side neurorrhaphy. The purpose of this study was to examine regeneration of nerve in various conditioned side to side neurorrhaphy. Total of 25 male Sprague-Dawley rats weighing 220 to 250 gm were divided into five groups of five rats each. The group 1, sham group, composed of dissection only without nerve transaction. The group 2, control group, composed of nerve division only without neurorrhaphy or sural nerve graft. The group 3 composed of one segmental sural nerve graft between the tibial and peroneal nerve after division. Group 4 had two segment graft, and the group 5 with three segment graft, each segment being 6mm long and 5 mm apart. The side to side neurorrhaphy was performed between peroneal nerve and tibial nerve using segmental sural nerve graft in rats. We exposed the sciatic nerve, tibial nerve, peroneal nerve, and sural nerve on left side with prone position. The peroneal nerve was cut on the bifurcation site from tibial nerve and the side to side epineurial neurorrhaphy was performed between peroneal nerve and tibial nerve through 6 mm sural nerve segment graft with 11-0 nylon under operating microscope. The electromyography and the weight from ipsilateral tibialis anterior muscle was performed at one month after neurorrhaphy Peroneal and tibial nerve was examined at distal and proximal to the neurorrhaphy site by methylene blue stain under light microscope for histologic appearance. The number of nerve fibers were counted using the image analyzer. Statistically, both in electromyography and number of nerve fibers, the differences in values between the groups were significant.

  • PDF

Facial palsy reconstruction

  • Soo Hyun Woo;Young Chul Kim;Tae Suk Oh
    • Archives of Craniofacial Surgery
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The facial nerve stimulates the muscles of facial expression and the parasympathetic nerves of the face. Consequently, facial nerve paralysis can lead to facial asymmetry, deformation, and functional impairment. Facial nerve palsy is most commonly idiopathic, as with Bell palsy, but it can also result from a tumor or trauma. In this article, we discuss traumatic facial nerve injury. To identify the cause of the injury, it is important to first determine its location. The location and extent of the damage inform the treatment method, with options including primary repair, nerve graft, cross-face nerve graft, nerve crossover, and muscle transfer. Intracranial proximal facial nerve injuries present a challenge to surgical approaches due to the complexity of the temporal bone. Surgical intervention in these cases requires a collaborative approach between neurosurgery and otolaryngology, and nerve repair or grafting is difficult. This article describes the treatment of peripheral facial nerve injury. Primary repair generally offers the best prognosis. If primary repair is not feasible within 6 months of injury, nerve grafting should be attempted, and if more than 12 months have elapsed, functional muscle transfer should be performed. If the affected nerve cannot be utilized at that time, the contralateral facial nerve, ipsilateral masseter nerve, or hypoglossal nerve can serve as the donor nerve. Other accompanying symptoms, such as lagophthalmos or midface ptosis, must also be considered for the successful treatment of facial nerve injury.

Changes in Nerve Excitability During Neural Stretching (신경 신장 적용 시간에 따른 신경흥분성 변화)

  • Lee, Dong-Rour;Rhee, Min-Hyung;Eom, Ju-Ri;Kim, Jong-Soon
    • PNF and Movement
    • /
    • v.16 no.2
    • /
    • pp.287-294
    • /
    • 2018
  • Purpose: The neurodynamic test used to implicate symptoms arising from the nerve is proposed to selectively increase the strain of the nerve without increasing the strain of adjacent tissue, although this has not yet been established in the time of nerve tension application. This study aimed to investigate the acute effects of nerve stretching time on nerve excitability using compound nerve action potential (CNAP) analysis. Methods: Thirty healthy young adults (mean age=23.10 years) with no medical history of neurological or musculoskeletal disorder voluntarily participated in this study. Nerve excitability was assessed using the median nerve conduction velocity test. The amplitude of the CNAP was measured under three conditions: resting phase (supra-maximal stimulus, without nerve stretching), baseline phase (two-thirds of the supra-maximal stimulus, without nerve stretching), and stretch phase (two-thirds of the supra-maximal stimulus, with 1-5 minutes nerve stretching). One-way repeated measures ANOVA was conducted to compare the latency and amplitude of CNAP. A post-hoc test was analyzed using the contrast test. Results: The latency was significantly delayed after 1 min. of nerve stretching in comparison with the baseline test. However, no significant difference was found during the nerve stretching (1-5 min.). The amplitude was significantly increased by nerve stretching. Conclusion: Nerve stretching can induce nerve excitability without any nerve injury. Based on the results, more than 1 min. of nerve stretching as a neurodynamic test can be a useful method in the clinical setting.

Peripheral Nerve Regeneration Through Nerve Conduit Composed of Alginate-Collagen-Chitosan

  • Kim, Sang-Wan;Bae, Hong-Ki;Nam, Hye-Sung;Chung, Dong-June;Choung, Pill-Hoon
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.94-100
    • /
    • 2006
  • Although the peripheral nerve system has a relatively good regenerating capacity compared to the central nerve system, peripheral nerve repair remains a clinical challenge as restoration of normal nerve function is highly variable. Synthetic tubular nerve conduits were designed as an alternative repair method in order to replace the need for an isograft. These nerve conduits guide regenerating axons from the proximal toward the distal end, maintain within growth-promoting molecules released by the nerve stumps, and protect regenerating axons from infiltrating scar tissue. In this work, we prepared cinnamoylated alginate (CA)-collagen-chitosan nerve conduit using the lyophilization method to generate a controllable parallel channel in the center and then investigated its influence on peripheral nerve regeneration in an animal study. At 12 weeks after implantation, histological study showed that tissue cable was continuously bridging the gap of the sciatic nerve in all rats. Our newly developed nerve conduit is a promising tool for use in peripheral nerve regeneration and provides a suitable experimental model for future clinical application.

PRELIMINARY STUDY ON HISTOLOGIC CHANGES IN THE NERVE AND SURROUNDING TISSUES AFTER INFERIOR ALVEOLAR NERVE TRANSPOSITION IN RABBITS (토끼 하치조신경 전위술 후의 신경 및 신경주변조직 변화 관찰을 위한 예비 실험)

  • Song, Hyun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.350-355
    • /
    • 1999
  • Purpose : The purpose of this study was 1) to find nerve damage after inferior alveolar nerve transposition and 2) to examine whether the soft tissue or bone changes around the nerve produce the compression to the nerve in the healing period. Materials and Method : Inferior alveolar nerve was exposed through the bony window and the scratch was made in the bone to be thought as the inferior alveolar canal. Suture was made after the nerve was repositioned. The nerve and surrounding tissues were examined with the light microscope and the fluorescent microscope before surgery and at 1 month, 3 months, and 5 months after surgery. Results : After surgery, the epineurium was damaged and the nerve was divided to several fascicles covered with the perineurium The newly formed fibrous connective tissue and vessels were seen around fascicles. There was new bone formation. However the nerve was not compressed by the connective tissue or the new bone. Conclusion : The results of this study suggest that neurosensory disturbances after inferior alveolar nerve transposition are resulted by the direct trauma in surgery rather than the compression to the nerve by the scar or new bone formation in the healing period.

  • PDF

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Masseter nerve-based facial palsy reconstruction

  • Park, Hojin;Jeong, Seong Su;Oh, Tae Suk
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.6
    • /
    • pp.337-344
    • /
    • 2020
  • Facial paralysis is a devastating disease, the treatment of which is challenging. The use of the masseteric nerve in facial reanimation has become increasingly popular and has been applied to an expanded range of clinical scenarios. However, appropriate selection of the motor nerve and reanimation method is vital for successful facial reanimation. In this literature review on facial reanimation and the masseter nerve, we summarize and compare various reanimation methods using the masseter nerve. The masseter nerve can be used for direct coaptation with the paralyzed facial nerve for temporary motor input during cross-facial nerve graft regeneration and for double innervation with the contralateral facial nerve. The masseter nerve is favorable because of its proximity to the facial nerve, limited donor site morbidity, and rapid functional recovery. Masseter nerve transfer usually leads to improved symmetry and oral commissure excursion due to robust motor input. However, the lack of a spontaneous, effortless smile is a significant concern with the use of the masseter nerve. A thorough understanding of the advantages and disadvantages of the use of the masseter nerve, along with careful patient selection, can expand its use in clinical scenarios and improve the outcomes of facial reanimation surgery.

Effects of Aqueous Extract of Achyranthes Japonica on Functional Recovery in Sciatic Nerve after Crushed Sciatic Nerve Injury in Rats (우슬 추출물이 흰쥐 좌골신경 손상 후 좌골신경의 기능회복에 미치는 영향)

  • Lee, Ma-Seong;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.143-158
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problem and often result in severe functional deficits. The aim of this study is to evaluate the effects of aqueous extract of Achyranthes japonica(AJ) on functional recovery in sciatic nerve after crushed sciatic nerve injury. Methods : In the present study, the animals in the AJ-treated groups received the aqueous extract of AJ at the respective doses orally for 13 consecutive days. In order to assess the effects of the aqueous extract of AJ on function recovery in crushed sciatic nerve injury, sciatic functional index(SFI) was performed. c-Fos expression in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG), and neurofilament, and the expressions of brain-derived neurotrophic factor(BDNF), nerve growth factor(NGF) following crushed sciatic nerve injury in rats were investigated. For this, immunohistochemistry and western blot were performed. Results : In the present study, crushed sciatic nerve injury showed characteristic gait changes showing decrease of SFI value and treatment with the aqueous extract of AJ significantly enhanced the SFI value. Neurofilament expression in the sciatic nerve was decreased by crushed sciatic nerve injury and treatment with the AJ increased neurofilament expression. The expressions of BDNF and NGF in the sciatic nerve were increased following crushed sciatic nerve injury and treatment with the AJ significantly controlled the sciatic nerve injury-induced increment of BDNF and NGF expressions. c-Fos expressions in the PVN and vIPAG were increased following crushed sciatic nerve injury and treatment with the AJ significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions. Conclusions : These results suggest that AJ treatment after crushed sciatic nerve injury is effective in the functional recovery by enhancing axonal regeneration and suppressing of pain.

The Availability of Gore-Tex® Tube as Nerve Conduit at the Peripheral Nerve Defect (말초신경 결손시 신경도관으로서 Gore-Tex® 도관의 유용성)

  • Lee, Ki Ho;Oh, Sang Ha;Lee, Seung Ryul;Kang, Nak Heon
    • Archives of Plastic Surgery
    • /
    • v.32 no.5
    • /
    • pp.613-618
    • /
    • 2005
  • When a large peripheral nerve defect occurs, an autologous nerve graft is the most ideal method of recinstruction. But an autologous nerve graft has many limitations due to donor site morbidities. Many previous focused on finding the ideal nerve conduit. Among them, $Gore-Tex^{(R)}$ has several advantages over other conduits. It can be manipulated to a suitable size, does not collapse easily, and it is a semi- permeable material that contain pores. A round shaped nerve can be newly formed because of its smooth inner surface. The purpose of this study was to evaluate the availability of $Gore-Tex^{(R)}$ tube as a nerve conduit at the peripheral nerve defect in the rat sciatic nerve. The 10 mm nerve gap was made in each group. A $Gore-Tex^{(R)}$ tube filled with skeletal muscle was inserted and autologous nerve graft was harvested, respectively. In the experimental group, we placed a 0.5 mm thickness, $30{\mu}m$ pored, 1.8 mm in diameter and 14 mm length tube with skeletal muscle inserted inside. In the control group, the nerve gap was inserted with a rat sciatic nerve. We estimated the results electrophysiologically and histologically to 16 weeks postoperatively. Results in the nerve conduction velocity, total myelinated axon count, myelin sheath thickness and mean nerve fiber diameter, the experimental group was substantially lower than that of the control group, but the statistic difference was not significant (p<0.05). The morphology was very similar in both groups, microscopically. From the above results, We conclude that $Gore-Tex^{(R)}$ qualifies as an ideal nerve conduit. It is suggested that $Gore-Tex^{(R)}$ tube filled with skeletal muscle may, substitute for an autologous nerve graft.