• 제목/요약/키워드: Nernst loss

검색결과 4건 처리시간 0.016초

Analysis of Flow Rate Inducing Voltage Loss in a 100 cm2 Class Molten Carbonate Fuel Cell

  • Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.20-25
    • /
    • 2011
  • This work focuses on the behavior of the overpotential increase due to a utilization rise in a molten carbonate fuel cell. The behavior is generally explained by Nernst loss, which is a kind of voltage loss due to the thermodynamic potential gradients in a polarization state due to the concentration distribution of reactant species through the gas flow direction. The evaluation of Nernst loss is carried out with a traditional experimental method of constant gas utilization (CU). On the other hand, overpotential due to the gas-phase mass-transport resistance at the anode and cathode shows dependence on the utilization, which can be measured using the inert gas step addition (ISA) method. Since the Nernst loss is assumed to be due to the thermodynamic reasons, the voltage loss can be calculated by the Nernst equation, referred to as a simple calculation (SC) in this work. The three values of voltage loss due to CU, ISA, and SC are compared, showing that these values rise with increases in the utilization within acceptable deviations. When we consider that the anode and cathode reactions are significantly affected by the gas-phase mass transfer, the behavior strongly implies that the voltage loss is attributable not to thermodynamic reasons, namely Nernst loss, but to the kinetic reason of mass-transfer resistance in the gas phase.

고체산화물 연료전지를 위한 물성치 모델 및 단전지 해석 (Physical Property Models and Single Cells Analysis for Solid Oxide Fuel Cell)

  • 박준근;김선영;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.379-381
    • /
    • 2009
  • The simulation model for metal-supported Solid Oxide Fuel Cell(SOFC) is developed in this study. Open circuit voltage is calculated using Nernst equation and Gibbs free energy is required by thermodynamic. The exchange current densities are compared with experimental results since exchange current density is most effective factor for the activation loss. Liu's study is used for the exchange current density of cathode, BSCF, and Koide's result is applied for the exchange current density of anode, Ni/YSZ. For the ohmic loss, ionic conductivity of YSZ is described from Kilner's mode and the data are compared with Wanzenberg's experimental data. Diffusivity is an important factor for the mass transfer through the porous medium. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results.

  • PDF

용융탄산염 연료전지용 공기극과 연료극의 저항 모델링 (Modelling of the Resistance Model for Anode and Cathode for Molten Carbonate Fuel Cells)

  • 이창환;정정열
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.267-273
    • /
    • 2018
  • From the experiments of various temperature and gas compositions, total resistance which is composed of ohmic resistance, anode resistance, cathode resistance and Nernst loss was calculated wit simple assumption. In this work, the anode and the cathode resistance was modelled with new equation which can account for the correlation between the operating temperature and the gas composition. The proposed model can predict the resistance with maximum error of 2.57% and employed in the simulation of molten carbonate fuel cells.

고체산화물 연료전지의 전극과 스택운영의 기능적 분석 (Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell)

  • 배중면;김기현;지현진;김정현;강인용;임성광;유영성
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.