• Title/Summary/Keyword: Neodymium:yttrium-aluminum-garnet laser

Search Result 17, Processing Time 0.023 seconds

Treatment of Refractory Melasma with Microwave-generated, Atmospheric-pressure, Non-thermal Nitrogen Plasma

  • Kim, Hyun-Jo;Kim, Heesu;Kim, Young Koo;Cho, Sung Bin
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.74-79
    • /
    • 2019
  • Periorbital melasma is often refractory to treatment and highly associated with rebound hyperpigmentation or mottled hypopigmentation after laser treatment in Asian patients. In this report, we describe 2 patients with cluster-1 periorbital melasma and 1 patient with cluster-2 periorbital melasma who experienced remarkable clinical improvements after microwave-generated, atmospheric-pressure, non-thermal nitrogen plasma treatments. All patients exhibited limited clinical responses after combination treatments with topical bleaching agents, systemic oral tranexamic acid, and low-fluenced Q-switched neodymium (Nd):yttrium-aluminum-garnet (YAG) lasers. Low-energy nitrogen plasma treatment at 0.75 J elicited remarkable clinical improvement in the periorbital melasma lesions without post-laser therapy rebound hyperpigmentation and mottled hypopigmentation. We deemed that a single pass of nitrogen plasma treatment at 0.75 J induces mild microscopic thermal tissue coagulation and modification within the epidermis while preserving the integrity of the basement membrane in patients with periorbital melasma. Accordingly, nitrogen plasma-induced dermal tissue regeneration could play a role in the treatment of melasma lesions.

Immediate effect of Nd:YAG laser monotherapy on subgingival periodontal pathogens: a pilot clinical study

  • McCawley, Thomas K.;McCawley, Mark N.;Rams, Thomas E.
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • Purpose: This pilot study assessed the immediate in vivo effect of high peak pulse power neodymium-doped yttrium aluminum garnet (Nd:YAG) laser monotherapy on selected red/orange complex periodontal pathogens in deep human periodontal pockets. Methods: Twelve adults with severe periodontitis were treated with the Laser-Assisted New Attachment Procedure (LANAP®) surgical protocol, wherein a free-running, digitally pulsed, Nd:YAG dental laser was used as the initial therapeutic step before mechanical root debridement. Using a flexible optical fiber in a handpiece, Nd:YAG laser energy, at a density of 196 J/cm2 and a high peak pulse power of 1,333 W/pulse, was directed parallel to untreated tooth root surfaces in sequential coronal-apical passes to clinical periodontal probing depths, for a total applied energy dose of approximately 8-12 joules per millimeter of periodontal probing depth at each periodontal site. Subgingival biofilm specimens were collected from each patient before and immediately after Nd:YAG laser monotherapy from periodontal pockets exhibiting ≥6 mm probing depths and bleeding on probing. Selected red/orange complex periodontal pathogens (Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia/nigrescens, Fusobacterium nucleatum, Parvimonas micra, and Campylobacter species) were quantified in the subgingival samples using established anaerobic culture techniques. Results: All immediate post-treatment subgingival biofilm specimens continued to yield microbial growth after Nd:YAG laser monotherapy. The mean levels of total cultivable red/orange complex periodontal pathogens per patient significantly decreased from 12.0% pretreatment to 4.9% (a 59.2% decrease) immediately after Nd:YAG laser monotherapy, with 3 (25%) patients rendered culture-negative for all evaluated red/orange complex periodontal pathogens. Conclusions: High peak pulse power Nd:YAG laser monotherapy, used as the initial step in the LANAP® surgical protocol on mature subgingival biofilms, immediately induced significant reductions of nearly 60% in the mean total cultivable red/orange complex periodontal pathogen proportions per patient prior to mechanical root instrumentation and the rest of the LANAP® surgical protocol.

Design of a Microthruster using Laser-Sustained Solid Propellant Combustion

  • Kakami, Akira;Masaki, Shinichiro;Horisawa, Hideyuki;Tachibana, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.605-610
    • /
    • 2004
  • Solid propellants allow thrusters to be light-weight, com-pact and robust because they require neither tank nor valve, Moreover, the solid propellant will not leak, spill or slosh. Consequently, the solid propellant thruster is one of the potential candidates for the microthruster. On the other hand, the control of the solid propellant combustion is difficult, since the conventional solid propellant continues to bum until all the stored propellant is consumed. Although particular devices like thrust reverser were designed to control the combustion, these devices were rarely used in the practical rocket motors. These devices rise thruster weight as well as complicate the thruster operation. In this study, a solid propellant microthruster using laser sustained combustion was designed in order to develop a high-efficiency microthruster overcoming the previously-mentioned difficulty. This designed thruster has semiconductor lasers and non-self-combustible solid propellants in addition to the conventional solid propellant thruster. In this designed thruster, the semiconductor laser controls the combustion of the non-self-combustible solid propellant. In order to demonstrate that the solid propellant combustion is controllable with laser, some non-self-combustible solid propellants were irradiated with the laser at a back-pressure of about 1㎪. A 40-W class Neodymium Yttrium Aluminum Garnet (ND:YAG) laser was used as a tentative alternate to the semiconductor laser. This experiment has shown that the solid propellant combustion was controllable with 10- W class laser irradiation.

  • PDF

Treatment of Axillary Osmidrosis Using a Subcutaneous Pulsed Nd-YAG Laser

  • Kim, Dae-Jin;Kim, Jun-Hyung;Yeo, Hyeon-Jung;Kwon, Hyuk-Jun;Son, Dae-Gu;Han, Ki-Hwan
    • Archives of Plastic Surgery
    • /
    • v.39 no.2
    • /
    • pp.143-149
    • /
    • 2012
  • Background : Axillary osmidrosis is characterized by an unpleasant odor, profuse sweating, and in some instances, staining of clothes that may socially and psychologically impair affected individuals. Various types of surgical procedures have been developed for the treatment of axillary osmidrosis. This study was undertaken to evaluate the effectiveness of subcutaneous pulsed neodymium: yttrium-aluminum-garnet (Nd-YAG) laser treatment for the treatment of axillary osmidrosis. Methods : Twenty-nine patients with axillary osmidrosis were included in this study. Patients were categorized according to the results of an axillary malodor grading system, and a subcutaneous pulsed Nd-YAG laser was applied to all patients. The treatment area for the appropriate distribution of laser energy was determined using the iodine starch test (Minor's test) against a grid pattern composed of $2{\times}2cm$ squares. The endpoint of exposure was 300 to 500 J for each grid, depending on the preoperative evaluation results. The results were evaluated by measurement of axillary malodor both pre- and postoperatively using the grading system and iodine starch test. Results : The average follow-up period was 12.8 months. Nineteen patients had a fair-to-good result and ten patients had poor results. The postoperative Minor's test demonstrated that there were remarkable improvements for patients with mild to moderate symptoms. Complications including superficial second degree burns (n=3) were treated in a conservative manner. A deep second degree burn (n=1) was treated by a surgical procedure. Conclusions : Subcutaneous pulsed Nd-YAG laser has many advantages and is an effective noninvasive treatment for mild to moderate axillary osmidrosis.

A Study of the Diffusion and Rise of Stack Plumes at Coastal Region by Using LIDAR Observation Data

  • Yoon, Ill-Hee
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.43-58
    • /
    • 1998
  • The Kwinana Shoreline Fumigation Experiment (KSFE) took place at Fremantle, WA, Australia between January 23 and February 8, 1995. The CSIRO DAR LIDAR measured plume sections from near the Kwinana Power Station (KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminum-garnet (Nd:YAG) laser operating at a fundamental wavelength of 1064 nm, with harmonics of 532 nm and 355 nm. For these experiments the third harmonic was used because the UV wavelength at 355 nm is eye safe beyond about 50 m. The laser fires a pulse of light 6 ns in duration (about 1.8 m long) and with an energy (at the third harmonic) of about 70 mJ. This pulse subsequently scattered and absorbed by both air molecules and particles in the atmosphere. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detected by a photo-multiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The smoke plume was clearly identifiable in the scans both before and after fumigation in the thermal internal boundary layer (TIBL). Both power station plumes were detected. Over the 9 days of operation, 1,568 plumes scans (214 series) were performed. Essentially all of these will provide instantaneous plume heights and widths, and there are many periods of continuous operation over several hours when it should be possible to compile hourly average plume statistics as well. The results of four days LIDAR observations of the dispersion of smoke plume in the TIBL at a coastal site are presented for the case of stages A and C.

  • PDF

Effect of surface treatments on the bond strength of indirect resin composite to resin matrix ceramics

  • Celik, Ersan;Sahin, Sezgi Cinel;Dede, Dogu Omur
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the shear bond strength (SBS) of an indirect resin composite (IRC) to the various resin matrix ceramic (RMC) blocks using different surface treatments. MATERIALS AND METHODS. Ninety-nine cubic RMC specimens consisting of a resin nanoceramic (RNC), a polymer-infiltrated hybrid ceramic (PIHC), and a flexible hybrid ceramic (FHC) were divided randomly into three surface treatment subgroups (n = 11). In the experimental groups, untreated (Cnt), tribochemical silica coating (Tbc), and Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser irradiation (Lsr) with 3 W (150 mJ/pulse, 20 Hz for 20 sec.) were used as surface treatments. An indirect composite resin (IRC) was layered with a disc-shape mold ($2{\times}3mm$) onto the treated-ceramic surfaces and the specimens submitted to thermal cycling (6000 cycles, $5-55^{\circ}C$). The SBS test of specimens was performed using a universal testing machine and the specimens were examined with a scanning electron microscope to determine the failure mode. Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tukey HSD test (${\alpha}=.05$). RESULTS. According to the two-way ANOVA, only the surface treatment parameter was statistically significant (P<.05) on the SBS of IRC to RMC. The SBS values of Lsr-applied RMC groups were significantly higher than Cnt groups for each RMC material, (P<.05). Significant differences were also determined between Tbc surface treatment applied and untreated (Cnt) PIHC materials (P=.039). CONCLUSION. For promoting a reliable bond strength during characterization of RMC with IRC, Nd:YAG laser or Tbc surface treatment technique should be used, putting in consideration the microstructure and composition of RMC materials and appropriate parameters for each material.

Two Cases of Diagnosis and Removal of Endobronchial Hamartoma by Cryotherapy via Flexible Bronchoscopy

  • Sim, Jae Kyeom;Choi, Jong Hyun;Oh, Jee Youn;Cho, Jae Young;Moon, Eul Sun;Min, Hye Sook;Lee, Byung Hyun;Park, Min Seon;Hur, Gyu Young;Lee, Sung Yong;Shim, Jae Jeong;Kang, Kyung Ho;Min, Kyung Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.3
    • /
    • pp.141-145
    • /
    • 2014
  • Although endobronchial hamartoma is a rare benign tumor, most patients with endobronchial hamartoma have respiratory symptoms such as obstructive pneumonia, hemoptysis, cough, or dyspnea due to bronchial obstruction. It can cause irreversible post-obstructive pulmonary destruction, thus early diagnosis and treatment is very important. Recently, there have been cases of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and electrocautery procedures for bronchoscopic treatment of malignant or benign central airway obstruction with comparable therapeutic efficacy and few complications. Bronchoscopic cryotherapy is a newly developed technique for management of central airway obstruction. Moreover, it provides diagnostic methods with improving diagnostic yield and safety. We report two cases of endobronchial hamartoma, each diagnosed and definitively treated with bronchoscopic techniques. Endobronchial biopsy and removal was successfully performed by cryotherapy via flexible bronchoscopy without notable complications. Follow-up bronchoscopic examinations excluded residual or recurrent disease.