• Title/Summary/Keyword: Nek2

Search Result 17, Processing Time 0.032 seconds

Isolation of Candidate Nek2-Interating Protein Genes(NIPs)

  • Yu, Jae-Cheol;Jang, Seong-Gi;Ri, Geon-Su
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.181-181
    • /
    • 2002
  • Nek2 is a mammalian protein kinase that is structurally homologous to NIMA, a mitotic regulator in Aspergillus nidulans. We recently observed that the Nek2 protein was localized in multiple sites within a cell in a cell cycle state-specific manner. This suggests that Ndk2 is involved in diverse cellular functions during the cell cycle progression. To have a better understanding on cellular functions in which Nek2 participates, we carried out yeast two-hybrid screening and isolated six candidate clones whose products interact with Nek2. Most of Nek2-interacting proteins (NIPs) appear cytoplasmic, suggesting that Nek2 is involved in cellular functions in cytoplasm. Further experiments are under progress to confirm their interactions with Nek2 and to understand their biological significance.

Involvement of Nek2 in Mammalian Development as a Cell Cycle Regulator

  • Kim, Yong-Ha;Rhee, Kunsoo
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • Nek2 is a mammalian protein kinase that is structurally homologous to NIMA, a mitotic regulator in Aspergillus nidulans. To understand cellular processes in which Nek2 participates during mammalian development, we investigated the expression and subcellular localization of Nek2 in vivo. The Nek2 protein was detected in spermatocytes and in a fraction of actively dividing ovarian follicle cells and of embryonic tissues. We also observed that Nek2 was localized in both the nucleus and centrosome in embryonic cells. Such localization pattern supports the proposal that Nek2 is a mitotic regulator that is involved in multiple cell cycle events during mammalian development.

  • PDF

Functional Analyses of Centrosomal Proteins, Nek2 and NuMA in Development of Mouse Gametes and Early Embryos

  • Youn, Hong-Hee;Oh, Hwa-Soon;Lee, Kwang-Hee;Son, Chae-Ick;Lee, Sang-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.96-96
    • /
    • 2003
  • Nek2 (NIMA-related protein) is a mammalian cell cycle-regulated kinase that involves in chromosome condensation and centrosome regulation and NuMA (nuclear mitotic apparatus protein) is involved in spindle assembly during a cell cycle. The cellular distribution and organization of the centrosomal components is completely unknown during fertilization and embryonic development. We examined distribution of two well-known centrosomal proteins, Nek2 and NuMA in mouse gametes and embryos to get an insight in the reorganization of centrosomal proteins during germ cell development and early fertilization. Spermatogenic cells, gametes, and embryos were analyzed with anti-Nek2 or -NuMA antibodies by immunological assay, RT-PCR, and overexpression through gene transfection. Mitotically or meiotically active spermatogenic cells were intensively stained with these antibodies in both centrosomes and cytoplasm, whereas the oocytes showed different staining patterns depending on the meiotic stages. During maturation, GV, GVBD, and MI stage were clearly stained with NuMA antibody in the nucleus or cytoplasm at MII. Also, Nek2 was detectable in cytoplasm as scattered spots or chromosome associated at MII. In early developmental embryo, NuMA was detected in nucleus of each blastomere, while Nek2 was detected in cytoplasm. In contrast to previously reported results, Nek2 and NuMA were detected in both decondensing head, and the centriole of demembranated and decondensed sperm or whole body of trypsin-treated sperm for Nek2. During meiotic progress in oocytes, transcripts levels were the highest in MI stage and then downregulated in MII. Also, it shows dramatically change in early developmental embryos, firstly, it was increased until 4 cell stage and reduced in 8 cell stage, and finally, transcript levels were upregulated until blastoscyst. This finding suggests that cnetrosomal component may play an important role in reorganizing of functional centrosome during fertilization process and subsequent development.

  • PDF

Regulation of Nek6 Functions by Its SUMOylation on the $K^{252}$ Residue

  • Lee, Eun-Jeoung;Hyun, Sung-Hee;Chun, Jae-Sun;Shin, Sung-Hwa;Lee, Kyung-Eun;Park, In-Suk;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.205-213
    • /
    • 2007
  • Nek6 belongs to NIMA1 (never in mitosis, gene A) related kinase, which was originally identified in Aspergillus nidulans as a serine/threonine kinase critical for cell cycle progression. We noticed that the putative SUMOylation site is localized on the $K^{252}$ residue in $^{251}FKsD^{254}$ of Nek6, based on the consensus sequence ${\Phi}KxE$; where ${\Phi}$ represents L, I, V or F and x is any amino acid. We observed that the Nek6 SUMO mutant (K252R) has decreased protein kinase activity, nuclear speckle localization and protein stability, compared with that of the Nek6 wild type. However, the Nek6 SUMO mutant increased the cell survival rate of COS-1 cells as determined by FACS analysis. Therefore, our data suggest that SUMOylation on the $K^{252}$ residue of Nek6 is required for its normal functions, such as proper nuclear localization, kinase activity and protein stability, to control cell cycle.