• Title/Summary/Keyword: Neighborhood Generation Method

Search Result 23, Processing Time 0.016 seconds

A Tabu Search Algorithm for Node Reprogramming in Wireless Sensor Networks (무선 센서 네트워크에서 노드 재프로그래밍을 위한 타부 서치 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.596-603
    • /
    • 2019
  • A reprogramming operation is necessary to update the software code of the node to change or update the functionality of the deployed node in wireless sensor networks. This paper proposes an optimization algorithm that minimizes the transmission energy of a node for the purpose of reprogramming a node in wireless sensor networks. We also design an algorithm that keeps energy consumption of all nodes balanced in order to maintain the lifetime of the network. In this paper, we propose a Tabu search algorithm with a new neighborhood generation method for minimizing transmission energy and energy consumption in wireless sensor networks with many nodes. The proposed algorithm is designed to obtain optimal results within a reasonable execution time. The performance of the proposed Tabu search algorithm was evaluated in terms of the node's transmission energy, remaining energy, and algorithm execution time. The performance evaluation results showed better performance than the previous methods.

Tabu Search based Optimization Algorithm for Reporting Cell Planning in Mobile Communication (이동통신에서 리포팅 셀 계획을 위한 타부서치 기반 최적화 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1193-1201
    • /
    • 2020
  • Cell planning, which determines the cell structure for location management of mobile terminals in mobile communications, has been dealt with as an important research task to determine network performance. Among the factors influencing the cell structure planning in mobile communication, the signal cost for location management plays the most important role. In this paper, we propose an optimization algorithm that minimizes the location management cost of all the cells used to plan the cell structure in the network with reporting cell structure in mobile communication. The proposed algorithm uses a Tabu search algorithm, which is a meta-heuristic algorithm, and the proposed algorithm proposes a new neighborhood generation method to obtain a result close to the optimal solution. In order to evaluate the performance of the proposed algorithm, the simulation was performed in terms of location management cost and algorithm execution time. The evaluation results show that the proposed algorithm outperforms the existing genetic algorithm and simulated annealing.

Social Network : A Novel Approach to New Customer Recommendations (사회연결망 : 신규고객 추천문제의 새로운 접근법)

  • Park, Jong-Hak;Cho, Yoon-Ho;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.123-140
    • /
    • 2009
  • Collaborative filtering recommends products using customers' preferences, so it cannot recommend products to the new customer who has no preference information. This paper proposes a novel approach to new customer recommendations using the social network analysis which is used to search relationships among social entities such as genetics network, traffic network, organization network, etc. The proposed recommendation method identifies customers most likely to be neighbors to the new customer using the centrality theory in social network analysis and recommends products those customers have liked in the past. The procedure of our method is divided into four phases : purchase similarity analysis, social network construction, centrality-based neighborhood formation, and recommendation generation. To evaluate the effectiveness of our approach, we have conducted several experiments using a data set from a department store in Korea. Our method was compared with the best-seller-based method that uses the best-seller list to generate recommendations for the new customer. The experimental results show that our approach significantly outperforms the best-seller-based method as measured by F1-measure.

  • PDF