• Title/Summary/Keyword: Neighbor Information

Search Result 1,183, Processing Time 0.04 seconds

Batch Processing Algorithm for Moving k-Farthest Neighbor Queries in Road Networks (도로망에서 움직이는 k-최원접 이웃 질의를 위한 일괄 처리 알고리즘)

  • Cho, Hyung-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.223-224
    • /
    • 2021
  • Recently, k-farthest neighbor (kFN) queries have not as much attention as k-nearest neighbor (kNN) queries. Therefore, this study considers moving k-farthest neighbor (MkFN) queries for spatial network databases. Given a positive integer k, a moving query point q, and a set of data points P, MkFN queries can constantly retrieve k data points that are farthest from the query point q. The challenge with processing MkFN queries in spatial networks is to avoid unnecessary or superfluous distance calculations between the query and associated data points. This study proposes a batch processing algorithm, called MOFA, to enable efficient processing of MkFN queries in spatial networks. MOFA aims to avoid dispensable distance computations based on the clustering of both query and data points. Moreover, a time complexity analysis is presented to clarify the effect of the clustering method on the query processing time. Extensive experiments using real-world roadmaps demonstrated the efficiency and scalability of the MOFA when compared with a conventional solution.

  • PDF

Neighbor Caching for P2P Applications in MUlti-hop Wireless Ad Hoc Networks (멀티 홉 무선 애드혹 네트워크에서 P2P 응용을 위한 이웃 캐싱)

  • 조준호;오승택;김재명;이형호;이준원
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.631-640
    • /
    • 2003
  • Because of multi-hop wireless communication, P2P applications in ad hoc networks suffer poor performance. We Propose neighbor caching strategy to overcome this shortcoming and show it is more efficient than self caching that nodes store data in theirs own cache individually. A node can extend its caching storage instantaneously with neighbor caching by borrowing the storage from idle neighbors, so overcome multi-hop wireless communications with data source long distance away from itself. We also present the ranking based prediction that selects the most appropriate neighbor which data can be stored in. The node that uses the ranking based prediction can select the neighbor that has high possibility to keep data for a long time and avoid caching the low ranked data. Therefore the ranking based prediction improves the throughput of neighbor caching. In the simulation results, we observe that neighbor caching has better performance, as large as network size, as long as idle time, and as small as cache size. We also show the ranking based prediction is an adaptive algorithm that adjusts times of data movement into the neighbor, so makes neighbor caching flexible according to the idleness of nodes

Probabilistic K-nearest neighbor classifier for detection of malware in android mobile (안드로이드 모바일 악성 앱 탐지를 위한 확률적 K-인접 이웃 분류기)

  • Kang, Seungjun;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.817-827
    • /
    • 2015
  • In this modern society, people are having a close relationship with smartphone. This makes easier for hackers to gain the user's information by installing the malware in the user's smartphone without the user's authority. This kind of action are threats to the user's privacy. The malware characteristics are different to the general applications. It requires the user's authority. In this paper, we proposed a new classification method of user requirements method by each application using the Principle Component Analysis(PCA) and Probabilistic K-Nearest Neighbor(PKNN) methods. The combination of those method outputs the improved result to classify between malware and general applications. By using the K-fold Cross Validation, the measurement precision of PKNN is improved compare to the previous K-Nearest Neighbor(KNN). The classification which difficult to solve by KNN also can be solve by PKNN with optimizing the discovering the parameter k and ${\beta}$. Also the sample that has being use in this experiment is based on the Contagio.

Neighbor-Based Probabilistic Rebroadcast Routing Protocol for Reducing Routing Overhead in Mobile Ad Hoc Networks

  • Harum, Norharyati;Hamid, Erman;Bahaman, Nazrulazhar;Ariff, Nor Azman Mat;Mas'ud, Mohd Zaki
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.1-8
    • /
    • 2021
  • In Mobile Ad-Hoc Network (MANET) Application, routing protocol is essential to ensure successful data transmission to all nodes. Ad-hoc On-demand Distance Vector (AODV) Protocol is a reactive routing protocol that is mostly used in MANET applications. However, the protocol causes Route Request (RREQ) message flooding issue due to the broadcasting method at the route request stage to find a path to a particular destination, where the RREQ will be rebroadcast if no Request Response (RREP) message is received. A scalable neighbor-based routing (SNBR) protocol was then proposed to overcome the issue. In the SNBR protocol, the RREQ message is only rebroadcast if the number of neighbor nodes less than a certain fix number, known as drop factor. However, since a network always have a dynamic characteristic with a dynamic number of neighbor nodes, the fix drop factor in SNBR protocol could not provide an optimal flooding problem solution in a low dense network environment, where the RREQ message is continuously rebroadcast RREQ message until reach the fix drop factor. To overcome this problem, a new broadcasting method as Dynamic SNBR (DSNBR) is proposed, where the drop factor is determined based on current number of neighbor nodes. This method rebroadcast the extra RREQ messages based on the determined dynamic drop factor. The performance of the proposed DSNBR is evaluated using NS2 and compared with the performance of the existing protocol; AODV and SNBR. Simulation results show that the new routing protocol reduces the routing request overhead, energy consumption, MAC Collision and enhances end-to-end delay, network coverage ratio as a result of reducing the extra route request messages.

Provider's Mobility Supporting Proactive Neighbor Pushing Scheme in CCN (CCN에서 정보제공자의 이동성 지원을 위한 푸싱 기법)

  • Woo, Taehee;Kwon, Taewook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.721-729
    • /
    • 2016
  • CCN(Content-Centric Network) enables users to retrieve content using the content's name. Researchers face critical challenges in terms of mobility. Since the routing information is part of the content name, when the provider moves, it is necessary to update all the routers routing information. However, this requires significant costs. In this paper, we propose PNPCCN(Proactive Neighbor Pushing CCN), considering the popularity and rarity of mobility support, for providers in CCN environments. Via simulation studies, we demonstrate that our solutions are effective in terms of shorter numbers of retransmitted Interest packets, and average download times and higher delivery ratios during mobility.

A KD-Tree-Based Nearest Neighbor Search for Large Quantities of Data

  • Yen, Shwu-Huey;Hsieh, Ya-Ju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.459-470
    • /
    • 2013
  • The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.

Flexible Nearest Neighbor Search for Grouping kNN (그룹핑 k-NN을 위한 유연한 최근접 객체 검색)

  • Song, Doohee;Park, Kwangjin
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.469-470
    • /
    • 2015
  • 우리는 그룹핑 k-최근접 (Grouping k Nearest Neighbor; GkNN)질의를 지원하기 위하여 유연한 최근접객체(Flexible Nearest Neighbor; FNN)검색 방법을 제안한다. GkNN이란 기존에 제안된 kNN과 다르게 질의자가 요청한 k개의 객체를 모두 확인한 후에 이동 경로의 총합이 가장 작은 k개의 객체를 검색하는 방법이다. 기존 연구에서 제안된 최근접 객체들 (Nearest Neighborhood; NNH) 또한 이 문제를 해결하기 위하여 제안되었다. 그러나 NNH의 문제점은 객체 k와 p가 고정되어 있기 때문에 이동 환경에서 q에서 C까지의 거리가 증가하는 것이다. FNN의 환경은 NNH의 환경과 유사하다. 우리는 NNH의 q에서 집합 C 중 거리 중 가장 짧은 $c_i$ 선택한 후 q에서 $c_i$에 포함된 객체들 모두 검색하는 이동 경로의 총합과 FNN의 이동경로의 총 합을 비교하여 NNH의 문제점을 해결하였다.

Neighbor Discovery for Mobile Systems based on Deep Learning (딥러닝을 이용한 주변 무선단말 파악방안)

  • Lee, Woongsup;Ban, Tae-Won;Kim, Seong Hwan;Ryu, Jongyeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.527-533
    • /
    • 2018
  • Recently, the device-to-device (D2D) communication has been conceived as the key technology for the next-generation mobile communication systems. The neighbor discovery in which the nearby users are found, is essential for the proper operation of the D2D communication. In this paper, we propose new neighbor discovery scheme based on deep learning technology which has gained a lot of attention recently. In the proposed scheme, the neighboring users can be found using the uplink pilot transmission of users only, unlike conventional neighbor discovery schemes in which direct pilot communication among users is required, such that the signaling overhead can be greatly reduced in our proposed scheme. Moreover, the neighbors with different proximity can also be classified accordingly which enables more accurate neighbor discovery compared to the conventional schemes. The performance of our proposed scheme is verified through the tensorflow-based computer simulations.

Learning Reference Vectors by the Nearest Neighbor Network (최근점 이웃망에의한 참조벡터 학습)

  • Kim Baek Sep
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF