• Title/Summary/Keyword: Negatively charged

Search Result 246, Processing Time 0.034 seconds

Stbilization of Perovskite Phase and Enhanced DPT Characteristics of $Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3-PbTiO_3$ Ceramics by the Additionof Excess Constituent Oxides ($Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3-PbTiO_3$계에서 구성 산화물 첨가에 따른 Perovskite상 안정화 및 DPT성 증대 효과)

  • 이규만;장현명;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.925-932
    • /
    • 1993
  • The perovskite phase in PZN-PMN-PT (Pb(Zn, Mg)1/3Nb2/3O3-PbTiO3) pseudoternary ceramics was stabilized by the addition of excess constituent divalent oxides (PbO, MgO and ZnO). The excess addition of 5mol% MgO or 7.5mol% PbO fully stabilized the perovskite phase. The enhanced diffuse phase transition (DPT) and the decrease in the electrical resistivity observed in the presence of excess ZnO or MgO were interpreted in terms of the additional formation of negatively charged, short-range ordered 1:1 domains with a concomitant generation of charge carriers, holes.

  • PDF

Effect of pH on Synthesis of Polypyrrole Nanowires by Using DNA Molecule Templates (DNA 분자를 형틀로 이용한 Polypyrrole 나노와이어의 합성시 pH 효과)

  • Choi, Young-Hun;Kim, Kyoung-Soeb;Kim, Nam-Hoon;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.109-110
    • /
    • 2007
  • Pyrrole and DNA can be used for synthesis of conducting nanowires. Protonated pyrrole and negatively charged DNA are absorbed by electrostatic interaction. The level of absorbance is related to pH of pyrrole. Therefore, DNA immobilized and aligned on the 3-aminopropyltrimethoxysi1ane (APTES) modified Si surface. Positive pyrrole monomers was deposited on aligned DNA for the synthesis of nanowire in various pH condition. And polypyrrole nanowires were synthesized by polimerization with ammonium persulfate (APS). These polypyrrole nanowires were measured by AFM, and then we found optimal pH level for the synthesis of nanowires.

  • PDF

Determination of Pd(II) and Pt(II) Metal Cyano Complexes Using Capillary Electrophoresis

  • Lee, Hue-Jin;Lee, Sang-Ho;Chung, Koo-Soon;Lee, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.945-949
    • /
    • 1994
  • Mixtures of cyano complexes of palladium(II) and platinum(II) were separated by capillary electrophoresis using a fused silica capillary as a separation column and 30 mM phosphate buffer (pH 7) containing 15 wt. % acetonitrile as a running buffer. By virtue of the high ionic mobilities of the negatively charged cyano complexes of Pd(II) and Pt(II), they were separated using a cathodic injection and anodic detection scheme. The metal complexes eluted through the capillary were detected by direct UV absorption at 214 nm. A linear relationship between peak area and concentration was obtained for both ions and the detection limit was lower than $10^{-14}$ mole. The proposed method was applied to real sample, e.g., anode slime obtained from an electrolytic copper refinary, as a method for the simultaneous determination of palladium and platinum.

Nonaqueous Capillary Electrophoresis of Chlorinated Phenols

  • 김보정;전만석;신상무;정두수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1483-1486
    • /
    • 1999
  • The contents of pentachlorophenol (PCP) and 2,3,5,6-tetrachlorophenol (TeCP) in textile products are regulated for safety. Since an organic solvent such as 2-methoxyethanol is needed to extract chlorinated phenols from textile samples, nonaqueous capillary electrophoresis has been applied to achieve the separation of PCP and isomers of TeCP. The run buffer was 100 mM Tris/acetate in methanol whose pH was adjusted to 8.0. All of the analytes were negatively charged at pH 8.0 and their electrophoretic velocities were higher than the electroosmotic flow of the methanol buffer. A reverse voltage of -20 kV was applied along a 27-cm fused silica capillary with ID of 50 μm, and PCP and 3 TeCP isomers were separated based on the difference in $pK_a$ values in less than 4 min. The limits of detection (S/N = 3) were about 0.02 μM. By varying pH of the methanol run buffer, $pK_a$ values of the 4 chlorinated phenols were also estimated.

ClC Chloride Channels in Gram-Negative Bacteria and Its Role in the Acid Resistance Systems

  • Minjeong Kim;Nakjun Choi;Eunna Choi;Eun-Jin Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.857-863
    • /
    • 2023
  • Pathogenic bacteria that colonize the human intestinal tract have evolved strategies to overcome acidic conditions when they pass through the gastrointestinal tract. Amino acid-mediated acid resistance systems are effective survival strategies in a stomach that is full of amino acid substrate. The amino acid antiporter, amino acid decarboxylase, and ClC chloride antiporter are all engaged in these systems, and each one plays a role in protecting against or adapting to the acidic environment. The ClC chloride antiporter, a member of the ClC channel family, eliminates negatively charged intracellular chloride ions to avoid inner membrane hyperpolarization as an electrical shunt of the acid resistance system. In this review, we will discuss the structure and function of the prokaryotic ClC chloride antiporter of amino acid-mediated acid resistance system.

Chemistry of mist deposition of organic polymer PEDOT:PSS on crystalline Si

  • Shirai, Hajime;Ohki, Tatsuya;Liu, Qiming;Ichikawa, Koki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.388-388
    • /
    • 2016
  • Chemical mist deposition (CMD) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was investigated with cavitation frequency f, solvent, flow rate of nitrogen, substrate temperature $T_s$, and substrate dc bias $V_s$ as variables for efficient PEDOT:PSS/crystalline (c-)Si heterojunction solar cells (Fig. 1). The high-speed camera and differential mobility analysis characterizations revealed that average size and flux of PEDOT:PSS mist depend on f, solvent, and $V_s$. The size distribution of mist particles including EG/DI water cosolvent is also shown at three different $V_s$ of 0, 1.5, and 5 kV for a f of 3 MHz (Fig. 2). The size distribution of EG/DI water mist without PEDOT:PSS is also shown at the bottom. A peak maximum shifted from 300-350 to 20-30 nm with a narrow band width of ~150 nm for PEDOT:PSS solution, whose maximum number density increased significantly up to 8000/cc with increasing $V_s$. On the other hand, for EG/water cosolvent mist alone, the peak maximum was observed at a 72.3 nm with a number density of ~700/cc and a band width of ~160 nm and it decreased markedly with increasing $V_s$. These findings were not observed for PEDOT:PSS/EG/DI water mist. In addition, the Mie scattering image of PEDOT:PSS mist under white bias light was not observed at $V_s$ above 5 kV, because the average size of mist became smaller. These results imply that most of solvent is solvated in PEDOT:PSS molecule and/or solvent is vaporized. Thus, higher f and $V_s$ generate preferentially fine mist particle with a narrower band width. Film deposition occurred when $V_s$ was impressed on positive to a c-Si substrate at a Ts of $30-40^{\circ}C$, whereas no deposition of films occurred on negative, implying that negatively charged mist mainly provide the film deposition. The uniform deposition of PEDOT:PSS films occurred on textured c-Si(100) substrate by adjusting $T_s$ and $V_s$. The adhesion of CMD PEDOT:PSS to c-Si enhanced by $V_s$ conspicuously compared to that of spin-coated film. The CMD PEDOT:PSS/c-Si solar cell devices on textured c-Si(100) exhibited a ${\eta}$ of 11.0% with the better uniformity of the solar cell parameters. Furthermore, ${\eta}$ increased to 12.5% with a $J_{sc}$ of $35.6mA/cm^2$, a $V_{oc}$ of 0.53 V, and a FF of 0.67 with an antireflection (AR) coating layer of 20-nm-thick CMD molybdenum oxide $MoO_x$ (n= 2.1) using negatively charged mist of 0.1 wt% 12 Molybdo (VI) phosphoric acid n-Hydrate) $H_3(PMo_{12}O_40){\cdot}nH_2O$ in methanol. CMD. These findings suggest that the CMD with negatively charged mist has a great potential for the uniform deposition of organic and inorganic on textured c-Si substrate by adjusting $T_s$ and $V_s$.

  • PDF

Separation of Unburned Carbon from Coal Fly Ash Using and Electrocyclone (電氣빠이클론을 이용한 石炭灰 중 미연탄소 저감기술 開發)

  • 조희찬;김정윤
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.14-22
    • /
    • 2001
  • For the recycle of coal fly ash generated from power stations, we developed an electrocyclone system which can separate unburned carbon form coal fly ash, based on the fact that coarse fly ash particles contain higher amount of unburned carbon and unburned carbon particles are charged positively, and pure ash particles are charged negatively on contacting each other. Additionally, guide vanes were installed in the cyclone to control the cut size. Two types of electrode, stick and grid type, were designed to investigate the effect of electrode type. Results show that by introducing an electric field inside the cyclone, the yield increases by 5 to 15e1o. But the content of unburned carbon in the clean ash does not change significantly.

  • PDF

Model of Particle Growth in Silane Plasma Reactor for Semiconductor Fabrication (반도체 제조용 사일렌 플라즈마 반응기에서의 입자 성장 모델)

  • 김동주;김교선
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.275-281
    • /
    • 2001
  • We used the discrete-sectional model to analyze the particle growth by coagulation of particles in silane plasma reactor, considering the Gaussian distribution function for particle charges. The effects of process conditions such as monomer size and mass generation rate of monomers on particle growth in plasma reactor were analyzed theoretically/ Based on the Gaussian distribution function of particle charges, the large particles of more than 40 nm in size are almost found to be charged negatively, but some fractions of small, tiny particles are in neutral state or even charged positively. As the particle size and surface area increase with time by particle coagulation, the number of charges per particle increases with time. As the large particles are generated by particle coagulation, the particle size distribution become bimodal. The results of discrete-sectional model for the particle growth in silane plasma reactor were in close agreement with the experimental results by Shiratani et al. [3] for the same plasma conditions. We believe the model equations for the particle charge distribution and coagulation between particles can be applied to understand the nano-sized particle growth in plasma reactor.

  • PDF

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.

Biological Evaluation of Acyclovir Microcapsule Suspension Prepared by Carbopol-Gelatin Coacervation (카르보폴-젤라틴의 상분리법을 이용한 Acyclovir 마이크로캅셀 현탁액의 제조 및 생물학적 평가)

  • Cho, Jin-Ho;Hahn, Yang-Hee;Yi, Jung-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.139-144
    • /
    • 1993
  • Microencapsulation of acyclovir, an effective antiviral agent which acts as a specific inhibitor of herpes DNA polymerase, by carbopol-gelatin complex coacervation has been carried out to develop an oral controlled release preparation, which could improve the absorption characteristics in GI tract. After dissolving carbopol and gelatin separately in distilled water at $40^{\circ}C$, gelatin solution was mixed with carbopol solution while stirring at the same temperature. The pH of the mixture was lowered gradually by dropwise addition of 10% HCI with continuous stirring, and then, at pH 3.5, positively charged gelatin molecules were attracted to negatively charged carbopol. These coacervation processes were observed by optical microscopy during preparation. Plasma concentrations of acyclovir in rats after an oral administration of microcapsule suspension were assayed by HPLC, and pharmacokinetic parameters were calculated based on the model-independent analyses. Two standard formulations, oral solution and intravenous bolus injection, were used as references to compare the bioavailability. It has been revealed that $C_{max}$, $T_{max}$, and MRT of microcapsule suspension were greater than those of oral solution, which results in about two-fold increases in bioavailability. Therefore, in conclusion, the carbopol-gelatin microcapsule of acyclovir might be evaluated as an effective oral controlled release preparation which could increase the bioavailability of acyclovir.

  • PDF