• Title/Summary/Keyword: Negatively charged

Search Result 246, Processing Time 0.02 seconds

The Effect of Negative electric field using charged PTFE membrane on Bone Healing of Rabbit Long Bone (Charged membrane에 의한 negative electric field가 토끼 장골의 골 치유에 미치는 영향)

  • Kwon, Yong-Su;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.551-562
    • /
    • 2004
  • The purpose of this study was to evaluate the effects of negatively electric field on bone healing in rabbit segmental long bone defects using negatively charged PTFE membrane. Ten millimeter segmental defects in the rabbit radius were used as the experimental model. After membranes were then charge injected using a corona-charging apparatus, the left defects were covered with non charged PTFE membranes as control groups, whereas the right defect was covered with negatively charged PTFE membranes as test group. The animals were divided into 4 groups of 2 rabbits each, and sacrificed at 2, 4, 6, and 8 weeks. Histomorphometric analysis showed a more newly formed bone in negatively charged membrane at early healing period. At 2 weeks, the proportion of new bone formation to total defect area was 0.32% in control group, 1.10% in experimental group. At 4 weeks, the proportion of new bone formation to total defect area was 6.86% in control, and 13.75% in experimental. At 6 and 8 weeks, no obvious difference was found between the two groups but newly formed bone in test groups were slightly more than that in control groups. In conclusion, negatively charged membranes showed more newly bone tissue than noncharged membranes at an early healing period. Although the number of samples was small, this study showed that the combination of negatively electrical stimulation and P1FE membrane may be of value in long bone healing.

Positively Charged Silver Nanoparticles Threaded on Carbon Nanotube for the Efficient Delivery of Negatively Charged Biomolecules

  • Park, Hyung-Seok;Hwang, Ji-Young;Shin, Ueon-Sang;Kim, Hae-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3581-3586
    • /
    • 2011
  • Silver nanoparticle (Ag-NPs)-immobilized and amine-functionalized carbon nanotubes (MWCNTs), MWCNT-Ag-$NH_2$, were easily prepared in order to develop an efficient delivery system of biomolecules without complicated processes of manufacture. For this, Ag-NPs-immobilized MWCNTs, MWCNT-Ag, were initially prepared in order to create large surface area to enable more efficient linkage with guest-molecules using pristine MWCNTs. The Ag-NPs on MWCNTs were further positively functionalized with 2-aminoethanthiol to allow ionic linkage with biomolecules. Ultimately, the positively charged delivery system proved to be highly effective for the binding capacity of bovine serum albumin (BSA) as a negatively charged model protein, when compared to that of lysozyme used as a positively charged model protein. The releasing profile of BSA was observed in almost linear pattern for about two weeks in a saline solution. This study demonstrated the potential usefulness of the pristine MWCNTs in conjunction with Ag-NPs for the selective delivery of many (negatively or positively) charged biomolecules including proteins and genes.

Filtration Efficiency of Electrically Charged Air Filters by a Corona Method

  • Murtadlo, Zainul Alim Ali;Joe, Yun-Haeng;Park, Seok-Hoon;Park, Hyun-Seol
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.15-25
    • /
    • 2019
  • The influences of corona charging parameters on collection efficiency and surface potential of air filters were investigated. A polypropylene filter medium was electrically charged using a corona charger, and the resulting surface potential and filtration efficiency against neutralized KCl particles were measured. The filter media was charged under different conditions of applied voltage, voltage polarity, charging time, and distance between electrodes. In addition, we considered charging both sides of the filter as well as charging one side of the filter. As a result, electrical force obtained by charged fiber affected filtration efficiency when the apply voltage strength was higher than 7 kV. Negatively charged filter had higher filtration efficiency than positively charged filter while the surface potential of the negatively charged filter was slightly lower than those of positively charged filter. Moreover, the filtration efficiency increased as the charging time of filter fiber increased and the distance between electrodes decreased. The filtration efficiency was more sensitive to changes of charging time than to those of electrode distance, and the efficiency of both sides charged filter was higher than that of single side charged filter.

Generation of Charged Clusters and their Deposition in Polycrystalline Silicon Hot-Wire Chemical Vapor Deposition (열선 CVD 증착 다결정 실리콘에서 전하를 띈 클러스터의 생성 및 증착)

  • Lee, Jae-Ik;Kim, Jin-Yong;Kim, Do-Hyeon;Hwang, Nong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.561-566
    • /
    • 2005
  • Polycrystalline silicon films were deposited using hot wire CVD (HWCVD). The deposition of silicon thin films was approached by the theory of charged clusters (TCC). The TCC states that thin films grow by self-assembly of charged clusters or nanoparticles that have nucleated in the gas phase during the normal thin film process. Negatively charged clusters of a few nanometer in size were captured on a transmission electron microscopy (TEM) grid and observed by TEM. The negatively charged clusters are believed to have been generated by ion-induced nucleation on negative ions, which are produced by negative surface ionization on a tungsten hot wire. The electric current on the substrate carried by the negatively charged clusters during deposition was measured to be approximately $-2{\mu}A/cm^2$. Silicon thin films were deposited at different $SiH_4$ and $H_2$ gas mixtures and filament temperatures. The crystalline volume fraction, grain size and the growth rate of the films were measured by Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The deposit ion behavior of the si1icon thin films was related to properties of the charged clusters, which were in turn controlled by the process conditions. In order to verify the effect of the charged clusters on the growth behavior, three different electric biases of -200 V, 0 V and +25 V were applied to the substrate during the process, The deposition rate at an applied bias of +25 V was greater than that at 0 V and -200 V, which means that the si1icon film deposition was the result of the deposit ion of charged clusters generated in the gas phase. The working pressures had a large effect on the growth rate dependency on the bias appled to the substrate, which indicates that pressure affects the charging ratio of neutral to negatively charged clusters. These results suggest that polycrystalline silicon thin films with high crystalline volume fraction and large grain size can be produced by control1ing the behavior of the charged clusters generated in the gas phase of a normal HWCVD reactor.

  • PDF

Investigation of the electrode reaction of cytochrome c and pyrroliquinoline quinone at self-assembled monolayers of amino acid

  • Kim Imsook;Kwak Juhyoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.27-30
    • /
    • 1999
  • Self-Assembled monolayers of carboxyl-terminated alkanethiols, which is negatively charged in pH 7.0, were usually used to facilitate the electron transfer between the positively charged protein and the electrode. In case of L-cysteine, as it has both positive and negative group, it can be a candidate for a new modifier to facilitate positively charged protein or negatively charged protein. Our investigation of L-cysteine shows that the electron transfer occurs successfully to both cytochrome c (cyt. c) and pyrroloquinoline quinone (PQQ). By using 1-ethyl-3-(3-dime-thlyaminopropyl) carbodiimide (EDC), we made a covalent bond between cyt. c and monolayer. Then PQQ was electrostatically adsorbed to the same monolayer. Cyclic voltammograms show that both molecules do not interfere each other and electron transfer is appreciable.

The Potential Barrier Scavenging Effects of the Charged Colloidal Semiconductors at the Magnetized SrO${\cdot}6Fe_{2}O_{3}$ Ceramics Interfaces (자화된 SrO${\cdot}6Fe_{2}O_{3}$ Ceramics 계면에서 대전된 colloid 반도체의 전위장벽 청소효과)

  • Jang Ho Chun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.22-27
    • /
    • 1992
  • The cyclic voltammogram characteristics at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ ceramics/(($10^{-3}$M KCI + p-Si powders) and /(($10^{-4}$M CsNO$_3$ + n-GaAs powders) suspension interfaces have been studied using the microelectrophoresis and the cyclic voltammetric method. The negatively charged ions are specifically absorbed on the virgin and the magnetized SrO${\cdot}6Fe_{2}O_{3}$ ceramics surfaces. The zeta potentials of the p-Si and n-GaAs colloidal semiconductors are + 41mV and -44.8mV, respectively. The magnetization effects act as potential barriers at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ interfaces. The positivelely charged p-Si and the negatively charged n-GaAs colloidal semiconductors act as potential barriers at the virgin SrO${\cdot}6Fe_{2}O_{3}$ interfaces. On the other hand, the charged p-Si and n-GaAs colloidal semiconductors act as potential barrier scavengers at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ interfaces. The magnetization effects and the charged colloidal semiconductor effects are irreversible and interdependent.

  • PDF

Detection of Fish Pathogenic Viruses in Seawater Using Negatively Charged Membranes (Negatively Charged Membrane을 이용한 해수 중 어류질병바이러스의 검출)

  • Jee, Bo Young;Kim, Kwang Il;Lee, Soon Jeong;Kim, Ki Hong;Jin, Ji Woong;Jeong, Hyun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • After an outbreak of viral disease in an aquafarm, release of virus (es) from infected fish into environmental seawater has been suspected. In the present study, we utilized a negatively charged membrane (HA type) as an efficient method for concentration and detection of fish pathogenic viruses, specifically, megalocytivirus and viral hemorrhagic septicemia virus (VHSV) present in field-collected seawater samples or inoculated into seawater artificially. Positively charged viruses adsorbed onto the negatively charged membrane and were eluted with 1 mM NaOH (pH 10.5) following rinsing with 0.5 mM $H_2SO_4$ (pH 3.0). Megalocytivirus and VHSV particles isolated using anegatively charged HA membrane from seawater inoculated with each virus at a concentration of 10 viral particles/mL were of sufficient quantity to show positive results in atwo-step PCR (or RT two-step PCR); however, despite it being negatively charged, a cellulose acetate (CA) membraneshowed negative results. In quantitative PCR, the detection limits of the HA membrane for megalocytivirus and VHSV in seawater were 1.20E+00 viral particles/mL and 1.22E+01 viralparticles/mL, respectively. The calculated mean recovery yields from 1 L seawater spiked with known concentrations of megalocytivirus and VHSV particles were 28.11% and 23.00%, respectively. The concentrate of a 1-L sample of culturing seawater from the aquatank of flounder suffering from VHSV showed clear positive results in PCR when isolated with an HA, but not a CA, membrane. Thus, viral isolation using an HA membrane is a practical and reliable method for detection of fish pathogenic viruses in seawater.

A Study on the Positively Charged Filter for Removing Fine Particles in Water (양전하가 부가된 수처리 필터의 입자제거특성에 관한 연구)

  • Jung, Sung-Hak;Kim, Jong-Won;Kim, Sang-Hee;Jeon, Byung-Heon;Lee, Seung-Gap;Lee, Jae-Keun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • The purpose of the present work is to investigate the removal characteristics of positively charged filters for capturing negatively charged particles such as bacteria and virus in water. In order to reduce the pressure drop and increase the filtration efficiency, the filter media, modified by charge modifier having positive functional groups, is developed and evaluated. Improved liquid filters have been developed with the modified surface charge to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in an aqueous liquid. The positively charged filter media is composed of glass fiber, cellulose and poly-ethylenimine resin for positively charging with the variation of volume ratio. The zeta potential value of the positively charged filter is +37.92 mV at the glass fiber and cellulose content ratio of 50 : 50 with resin content of 100%, while that of the PSL test particle is -23.5 mV at pH 7. The removal efficiency of the electro-positively charged filter is 98% for PSL particles of 0.11 ${\mu}m$, while that of the negatively charged filter is 7%. The positively charged filter media showed the potential to be an effective method for removing fine particles from the contaminated water for liquid filtration.

Electrokinetic Property and Flotation Characteristics of Scheelite (灰重石의 水溶液中에 있어서의 界面現象과 浮選特性에 關한 硏究)

  • Hyung Sup Choi;Kook Nam Han
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 1963
  • The fundamental investigations of surface properties of scheelite were made by electrophoretic mobility adsorption and contact angle measurements, and results have been correlated with its floatability obtained by Hallimond tube flotation test. The role of the interfacial electrical condition on the adsorption of collectors on mineral surfaces is discussed with the flotation of scheelite. From electrokinetic measurements made on scheelite, $Ca^{++}$ and $WO_4^{--}$ are identified to act as potential-determining ions, thus controlling the surface properties on this mineral. Therefore, at the fixed pH, the scheelite surface become to be less negatively charged with increasing $Ca^{++}$ concentration and more negatively charged with increasing $WO_4^{--}$ concentration in the pulp. Adsorption of collectors then depends strongly on the concentration of $Ca^{++}$ or $WO_4^{--}$ in the solution; anionic collectors are adsorbed on less negatively charged surfaces and cationic collectors on more negatively charged surfaces, which in turn defines the effective flotation range with respective collectors for this mineral.

  • PDF

Effect of Discharging Process on Electrical and Optical Properties in Charged Particle-type Reflective Electronic Display

  • Kim, Young-Cho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.333-337
    • /
    • 2014
  • In this study, the use of a discharging process for charged particles is proposed to achieve an ideal electrical balance or neutralization and to improve the electrical and optical properties of a reflective electronic display. Here, negatively charged particles (white) and positively charged particles (black) are used. The q/m (charge per mass for a particle) values of the black and white particles are $+4.5{\mu}C/g$ and $-4.5{\mu}C/g$, respectively. We compared the movement of the charged particles by varying their discharging time. Stable movement of the charged particles is obtained with an appropriate discharging time, which resulted in improvements of the optical properties of the panel.