• Title/Summary/Keyword: Negative voltage

Search Result 942, Processing Time 0.032 seconds

Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods

  • Zamani, Abbas;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.671-682
    • /
    • 2017
  • In this research, seismic response of pipes is examined by applying nanotechnology and piezoelectric materials. For this purpose, a pipe is considered which is reinforced by carbon nanotubes (CNTs) and covered with a piezoelectric layer. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via cylindrical shell element and Mindlin theory. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite and to consider the effect of the CNTs agglomeration on the scismic response of the structure. Moreover, the dynamic displacement of the structure is extracted using harmonic differential quadrature method (HDQM) and Newmark method. The main goal of this research is the analysis of the seismic response using piezoelectric layer and nanotechnology. The results indicate that reinforcing the pipeline by CNTs leads to a reduction in the displacement of the structure during an earthquake. Also the negative voltage applied to the piezoelectric layer reduces the dynamic displacement.

Fast Regulation Method for Commutation Shifts for Sensorless Brushless DC Motors

  • Yao, Xuliang;Zhao, Jicheng;Wang, Jingfang
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1203-1215
    • /
    • 2019
  • Sensorless brushless DC (BLDC) motor drive systems are often subjected to inaccurate commutation signals and can produce high current peaks and conduction consumption. To achieve accurate commutation, a fast commutation shift regulation method for sensorless BLDC motor drive systems considering the influence of the inductance freewheeling process is presented to compensate inaccurate commutation signals. The regulation method is effective in both steady speed and variable speed operations. In the proposed method, the commutation error is gained from the line-voltage difference integral in a 60 electrical-degree conduction period and the outgoing phase current before commutation. In addition, the detection precision of the commutation error is improved due to the consideration of the freewheeling period. The commutation error is directly obtained, which avoids successive optimization and accelerates the convergence rate of the proposed method. Moreover, the commutation error features a positive or negative sign, which can be utilized as an indicator of advanced or delayed commutation. Finally, experiments are conducted to validate the effectiveness and feasibility of the proposed method. The results obtained show that the proposed method can accurately regulate commutation signals.

A Study on Technology Development of High Capacity PWM Converter for Electric Vehicle (전기철도용 대용량 PWM 컨버터 기술개발에 관한 연구)

  • Han, Young-Jae;Jo, Jeong-Min;Bae, Chang-Han;Lee, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1729-1734
    • /
    • 2018
  • Recently, interest in environmentally friendly transportation systems has been increasing, and study on railway systems has been aggressively conducted. Therefore, lots of studies have been done in railway advanced countries to improve performance of PWM converter. The research on the PWM converter for railway vehicle was mainly carried out on the converter mounted on railway vehicle such as the high-speed railway and metropolitan railway. In also, a lot of study has been carried out to improve converter performance installed in the ground. The high-capacity transform used in this paper converted from AC 22.9kV to AC 590V. The converter changed from AC 590V to DC 950V. In general, in the case of rectifier, the DC power supply system has a negative impact on inverter control characteristics because it can not avoid the pulsating component. In this study, it was performed current control for high-capacity converter using Matlab Simulink. The PWM converter is normally performed through the voltage and current at starting mode, powering mode, and braking mode. In the light-load test and the on-line test, we have studied for the PWM converter characteristics. Using this research, we have founded that the converter has excellent performance.

The Pharmacological Studies on the Origin of Calcium ion in Myocardial Contraction (심근 수축에 있어서 Calcium 이온의 기원에 관한 약리학적 연구)

  • Ko, Chang-Mann;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 1994
  • Na-Ca exchange transports calcium ion either into (reverse mode Na-Ca exchange) or out of the cell (forward mode Na-Ca exchange) according to the direction of driving force produced by the changes in ratio of intra- and extra-cellular Na concentrations. Thus, Na-Ca exchange is regarded as the regulator of myocardial contraction. However, the existence of reverse mode Na-Ca exchange and its role in myocardial contraction is still questioned. Present study was performed to identify the presence of reverse mode Na-Ca exchange and its possible involvement in the regulation of myocardial contraction in rat heart. Using the left atria of rat, contraction was induced by electrical field stimulation (EFS, 0.5 msec duration and supramaximal voltage). Changing of the stimulation frequencies from resting 4 Hz to 0.4, 1 or 8 Hz caused typical negative staircase effect in twitch tension, but $^{45}Ca$ uptake showed bimodal increase. When the stimulation frequency was abruptly changed from 4 Hz to 0.4 Hz the atrial twitch tension showed three phased-enhancement, that is, the initial rapid increase (the first phase) followed by rapid decrease (the second phase) and stabilization (the third phase). $^{45}Ca$ uptake was equivalent to tension, i.e. initial significant increase in first 30 second and then decrease. Benzamil treatment abolished the first phase of increase in a dose dependent manner from $10^{-5}\;to\;3{\times}10^{-4}M.$ Bay k 8644 $(3{\times}10^{-5}M)$ treatment enhanced the inotropy induced by frequency reduction and abolished the second and third phase decreases. Benzamil treatment also suppressed the contraction stimulated by Bay K 8644. Although the contraction at 4 Hz stimulation was completely abolished by verapamil $3{\times}10^{-5}\;M$ pretreatment, the contraction reappeared as soon as the stimulation frequency was changed into 0.4 or 1 Hz and interstingly,$^{45}Ca$ uptake were significantly higher than no treatment. From these results, it is concluded that reduction of stimulation frequency causes calcium influx by the reverse mode Na-Ca exchange, resulting in initial rapid increase of twitch tension. then it turns into forward mode exchange to efflux the calcium, resulting in decrease of the twitch tension in left atria of rat.

  • PDF

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.

Magnetron Sputter Coating of Inner Surface of 1-inch Diameter Tube

  • Han, Seung-Hee;An, Se-Hoon;Song, In-Seol;Lee, Keun-Hyuk;Jang, Seong-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.135-135
    • /
    • 2015
  • Tubes are of extreme importance in industries as for fluid channels or wave guides. Furthermore, some weapon systems such as cannons use the tubes as gun barrels. To increase the service life of such tubes, a protective coating must be applied to the tubes' inner surface. However, the coating methods applicable to the inner surface of the tubes are very limited due to the geometrical restriction. A small-diameter cylindrical magnetron sputtering gun can be used to deposit coating layers on the inner surface of the large-bore tubes. However, for small-bore tubes with the inner diameter of one inch (~25 mm), the magnetron sputtering method can hardly be accommodated due to the space limitation for permanent magnet assembly. In this study, a new approach to coat the inner surface of small-bore tubes with the inside diameter of one inch was developed. Instead of using permanent magnets for magnetron operation, an external electro-magnet assembly was adopted around the tube to confine the plasma and to sustain the discharge. The electro-magnet was operated in pulse mode to provide the strong axial magnetic field for the magnetron operation, which was synchronized with the negative high-voltage pulse applied to the water-cooled coaxial sputtering target installed inside the tube. By moving the electro-magnet assembly along the tube's axial direction, the inner surface of the tube could be uniformly coated. The inner-surface coating system in this study used the tube itself as the vacuum chamber. The SS-304 tube's inner diameter was 22 mm and the length was ~1 m. A water-cooled Cu tube (sputtering target) of the outer diameter of 12 mm was installed inside of the SS tube (substrate) at the axial position. The 50 mm-long electro-magnet assembly was fed by a current pulse of 250 A at the frequency and pulse width of 100 Hz and 100 usec, respectively. The calculated axial magnetic field strength at the center was ~0.6 Tesla. The central Cu tube was synchronously driven by a HiPIMS power supply at the same frequency of 100 Hz as the electro-magnet and the applied pulse voltage was -1200 V with a pulse width of 500 usec. At 150 mTorr of Ar pressure, the Cu deposition rate of ~10 nm/min could be obtained. In this talk, a new method to sputter coat the inner surface of small-bore tubes would be presented and discussed, which might have broad industrial and military application areas.

  • PDF

Second harmonic generation of pulsed corona - poled nonlinear optical polymer films (펄스 corona 배향된 비선형광학 고분자박막의 제2 고조파발생)

  • Kim, Jun-Soo;Lee, Jong-Ha;Lee, Hwang-Un;Kim, Sang-Youl;Won, Young-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.356-362
    • /
    • 2002
  • The molecular orientational dynamics of the nonlinear optical(NLO) side-chain polymer N-(4-nitrophenyl)-(L)-prolinol-poly (pphenylene terephthalates) have been studied using nonlinear optical responses as measured by second harmonic generation (SHG). A new pulsed corona poling is used to orient the NLO chromophores and the polymer segments into the noncentrosymmetric structure required to obtain the SHG signal. By corona poling of negative high voltage pulses with variable repetition rates (between 0.5 and 10 ㎑) at temperature between 25$^{\circ}C$ and 80$^{\circ}C$, well below and about the glass transition temperature 70$^{\circ}C$, the side-chain chromophores and the polymer chain contour rearrange themselves and create the domain structure observed by atomic force microscopy(AFM). The pulsed corona voltage enhances the orientational ordering of the NLO chromophores and also significantly influences the growth of SHG signal and the improved relaxation behavior after the poling field is removed, reducing the visible damage to the polymer film dramatically. This new pulsed corona poling experiment gave direct in situ evidence that the NLO chromophore and the polymer backbone undergo anisotropic rearrangement during the poling process.

R-type Calcium Channel Isoform in Rat Dorsal Root Ganglion Neurons

  • Fang, Zhi;Hwang, Jae-Hong;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • R-type $Ca_v2.3$ high voltage-activated $Ca^{2+}$ channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six $Ca_v2.3$ isoforms ($Ca_v2.3a{\sim}Ca_v2.3e$), the $Ca_v2.3e$ isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of $Ca_v2.3$ isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, $Ca_v2.3a$ and $Ca_v2.3e$, in DRG neurons. Single-cell RT-PCR detected the expression of $Ca_v2.3e$ mRNA in 20% (n=14/70) of DRG neurons, relative to $Ca_v2.3a$ expression in 2.8% (n=2/70) of DRG neurons. $Ca_v2.3e$ mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of $Ca_v2.3e$ in nociceptive DRG neurons. Moreover, $Ca_v2.3e$ was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that $Ca_v2.3e$ may be the main R-type $Ca^{2+}$ channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.

A 0.18-μm CMOS Baseband Circuits for the IEEE 802.15.4g MR-OFDM SUN Standard (IEEE 802.15.4g MR-OFDM SUN 표준을 지원하는 0.18-μm CMOS 기저대역 회로 설계에 관한 연구)

  • Bae, Jun-Woo;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.685-690
    • /
    • 2013
  • This paper has proposed a multi-channel and wide gain-range baseband circuit blocks for the IEEE 802.15.4g MR-OFDM SUN systems. The proposed baseband circuit blocks consist of two negative-feedback VGAs, an active-RC 5th-order chebyshev low-pass-filter, and a DC-offset cancellation circuit. The proposed baseband circuit blocks provide 1 dB cut-off frequencies of 100 kHz, 200 kHz, 400 kHz, and 600 kHz respectively, and achieve a wide gain-range of +7 dB~+84 dB with 1 dB step. In addition, a DC-offset cancellation circuit has been adopted to mitigate DC-offset problems in direct-conversion receiver. Simulation results show a maximum input differential voltage of $1.5V_{pp}$ and noise figure of 42 dB and 37.6 dB at 5 kHz and 500 kHz, respectively. The proposed I-and Q-path baseband circuits have been implemented in $0.18-{\mu}m$ CMOS technology and consume 17 mW from a 1.8 V supply voltage.

Characteristics of Saturation and Circulating Current Based on Winding and Iron Core Structure of Grid-connected Transformer in Energy Storage System (ESS 연계용 변압기의 결선방식 및 철심구조에 따른 순환전류와 포화특성에 관한 연구)

  • Tae, Dong-Hyun;Lee, Hu-Dong;Kim, Ji-Myung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2020
  • Since the fire accident of ESS (energy storage system) occurred at Gochang KEPCO Power Testing Center in August 2017, 29 fire cases with significant property losses have occurred in Korea. Although the cause of fire accidents have not been identified precisely, it should be considered battery and PCS (power conditioning system) as well as unbalance issues in the distribution system. In particular, circulating currents in a neutral line of a grid-connected transformer, which can affect a magnetized current, may have a negative effect on the ESS with unintentional core saturation and surge voltages at the secondary side of the transformer. Therefore, this paper proposes the modeling of the distribution system, which was composed of a substation, grid-connected transformer, and customer loads using PSCAD/EMTDC S/W, to analyze the phenomena of circulating current and surge voltages of the transformer with unbalanced currents in the distribution system. This paper presents a countermeasure for a circulating current with the installation of NGR (neutral grounding resistor) in grid-connected transformer. From the simulation results, it is clear that exceeding the circulating current and surge voltage at the secondary side of the transformer can be one of the causes of fire accidents.