• 제목/요약/키워드: Negative ion source

검색결과 70건 처리시간 0.024초

탄소 음이온빔으로 증착되는 DLC 박막 제조에 미치는 수소 이온의 영향 (Hydrogen ion effect on the formation of DLC thin film by negative carbon ion beam)

  • 한동원;김용환;최동준;백홍구
    • 한국결정성장학회지
    • /
    • 제10권4호
    • /
    • pp.324-329
    • /
    • 2000
  • 상온에서 $Cs^+$ ion sputtering에 의해 발생된 탄소 음이온 빔과 Kaufmann type ion source를 이용하여 발생된 수소 양이온 빔을 Si기판 위에 동시에 증착함으로써 얻어지는 DLC 박막의 특성을 분석하여 DLC 박막의 증착에 미치는 수소 이온의 영향을 관찰하였다. 수소 가스의 flow rate을 0 sccm부터 12 sccm까지 변화 시킴에 따라 박막 내에 포함되는 수소의 양이 증가하였으며, 수소의 증가에 따라 박막 내에 $sp^2$구조가 증가하는 것을 알 수 있었다. 수소에 의한 $sp^2$결합이 증가되는 현상은 증착시 박막 내에 주입되는 수소의 양이 CVD에 비해 매우 적은 양이지만, 상대적으로 높은 에너지를 지니고 기판에 충돌하기 때문에 물리적 에너지 전달 효과가 DLC 박막의 형성에 크게 작용하였음을 알 수 있었다.

  • PDF

Negative ion beam sputter 법으로 증착한 DLC 박막의 특성 (I) (Properties of Diamond-like Carbon(DLC) Thin Films deposited by Negative Ion Beam Sputter (I))

  • 김대연;강계원;최병호
    • 한국재료학회지
    • /
    • 제10권7호
    • /
    • pp.459-463
    • /
    • 2000
  • 순수한 동적 결합반응이고 전하 누적이 없는 이온 임플란테이션, 새로운 재료 개발 등에 음이온을 직접 사용하는 새로운 연구가 진행되고 있으며, 이러한 관점에서 새로운 고체상의 Cs이온 법이 실험실 규모로 연구되고 있다. 본 논문에서는 음이온 Cs gun으로 DLC 박막을 실리콘 위에 제조하였다. 이 시스템은 가스가 필요없으므로, 고 진공에서 증착이 일어난다. C(sup)-빔 에너지는 80~150eV 사이에서 조절이 우수하였다. Raman 분석결과 박막의 DLC 지수, 즉$sp^3$비율은 이온 에너지 증가에 따라 증가하였으며, 미소 경도값 또한 7에서 14GPa로 증가하였다. DLC박막의 표면 평균거칠기(Ra)는 ~1$\AA$정도로 아주 매끈하였으며, 불순물이 내재되지 않는 박막을 얻을 수 있었다.

  • PDF

Analysis of Fatty Acyl Groups of Diacyl Galactolipid Molecular Species by HPLC/ESI-MS with In-source Fragmentation

  • Gil, Ji-Hye;Hong, Jong-Ki;Choe, Joong-Chul;Kim, Young-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1163-1168
    • /
    • 2003
  • The structures of molecular species of galactolipids, such as monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), isolated from wheat flour have been investigated using negative-ion electrospray ionization (ESI) mass spectrometry interfaced with high performance liquid chromatography (HPLC). According to the result of HPLC analysis, MGDG and DGDG were found to consist of mixtures of five and four molecular species, respectively. The galactolipids have been also analyzed to determine their fatty acid compositions, using HPLC/ESI-MS combined with in-source (or cone voltage) fragmentation. HPLC/ ESI-MS is very useful for one-step analysis of mixtures of galactolipids with a small sample quantity. Especially, the carboxylate anions produced in in-source fragmentations of the negative-ion of each component separated by HPLC provide valuable information on the composition of its fatty acyl chains.

PLASMA SOURCE ION IMPLANTATION OF NITROGEN AND CARBON IONS INTO CO-CEMENTED WC

  • Han, Seung-Hee;Lee, Yeon-Hee;Lee, Jung-Hye;Kim, Hai-Dong;Kim, Gon-Ho;Kim, Yeong-Woo;Cho, Jung-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.220-220
    • /
    • 1999
  • In plasma source ion implantation, the target is immersed in the plasma and repetitively biased by negative high voltage pulses to implant the extracted ions from plasma into the surface of the target material. In this way, the problems of line-of-sight implantation in ion-beam ion implantation technique can be effectively solved. In addition, the high dose rate and simplicity of the equipment enable the ion implantation a commercially affordable process. In this work, plasma source ion implantation technique was used to improve the wear resistance of Co-cemented WC. which has been extensively used for high speed tools. Nitrogen and carbon ions were implanted using the pulse bias of -602kV, 25 sec and at various implantation conditions. The implanted samples were examined using scanning Auger electron spectroscopy and XPS to investigate the depth distributions of implanted ions and to reveal the chemical state change due to the ion implantation. The implanted ions were found to have penetrated to the depth of 3000$\AA$. The wear resistance of the implanted samples was measured using pin-on-disc wear tester and the wear tracks were examined with alpha-step profilometer.

  • PDF

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

Nucleation, Growth and Properties of $sp^3$ Carbon Films Prepared by Direct $C^-$ Ion Beam Deposition

  • Kim, Seong I.
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.173-176
    • /
    • 1997
  • Direct metal ion beam deposition is considered to be a whole new thin film deposition technique. Unlike other conventional thin film deposition processes, the individual deposition particles carry its own ion beam energies which are directly coupled for the formation of this films. Due to the nature of ion beams, the energies can be controlled precisely and eventually can be tuned for optimizing the process. SKION's negative C- ion beam source is used to investigate the initial nucleation mechanism and growth. Strong C- ion beam energy dependence has been observed. Complete phase control of sp3 and sp3, control of the C/SiC/Si interface layer, control of crystalline and amorphous mode growth, and optimization of the physical properties for corresponding applications can be achieved.

  • PDF

비정질 Se-Ge 박막으로의 LMIS $Ga^+$ 이온 침투현상 (The penetration phenomena of LMIS Ga ion into amorphous Se-Ge thin film)

  • 이현용;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1262-1264
    • /
    • 1993
  • An amorphous $Se_{75}Ge_{25}$ thin film as inorganic resist for the focused ion beam lithography(FIBL) is investigated. This film offers an attractive potential alternative to polymer resists because of a number of advantages, such as the possibility of preparing physically uniform films of thickness as small as 200A and obtaining both positive and negative resist action in the same material, compatibility with dry processing, the sensitivity on optical, e-beam and ion beam exposure, the high-temperature stability, etc. In previous paper, the defocused ion beam-induced characteristics in a-$Se_{75}Ge_{25}$ film has been propose. Practically it is neccesary to know the relation with resist and source ions. For the purpose, the ion stopping power, the ion projected range and ion transmission coefficiency are studied. In this paper, the theoretically calculated values of parameters are presented and compared with theory.

  • PDF

이온 에너지 분석에 의한 Sputter Ion Plating의 동작 특성 연구 (A Study on the Characteristics of Sputter ion Plating by ion Energy Analysis)

  • 성열문;이창영;조정수;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.228-230
    • /
    • 1994
  • A Spotter ion Plating(SIP) system with a r. f. coil electrode and the Facing Target Sputter(FTS) source was designed for high-quality thin film formation. The rf discharge was combined with DC facing target sputtering in order to enhance ionization degree of a sputtered atoms. The discharge voltage-discharge characteristics curves of a FTS source could be characterized by the fern of $I{\propto}V^n$ with n in the range of $8{\sim}12$. The energy of ions incident on the substrate depended on the sheath potential of DC biased substrate. The mean impact ion energy increased with negative bias voltage and rf power. The adhesive force of the TiN film formed was in the range of $30{\sim}50N$, and markedly influenced by substrate bias voltage.

  • PDF

Suppression of stray electrons in the negative ion accelerator of CRAFT NNBI test facility

  • Yuwen Yang ;Jianglong Wei ;Junwei Xie ;Yuming Gu;Yahong Xie ;Chundong Hu
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.939-946
    • /
    • 2023
  • Comprehensive Research Facility for Fusion Technology (CRAFT) is an integration of different demonstrating or testing facilities, which aim to develop the critical technology or composition system towards the fusion reactor. Due to the importance and challenge of the negative ion based neutral beam injection (NNBI), a NNBI test facility is included in the framework of CRAFT. The initial object of CRAFT NNBI test facility is to obtain a H0 beam power of 2 MW at the energy of 200-400 keV for the pulse duration of 100 s. Inside the negative ion accelerator of NNBI system, the interactions of the negative ions with the background gas and electrodes can generate abundant stray electrons. The stray electrons can be further accelerated and dumped on the electrodes or eject from the accelerator. The stray electrons, including the ejecting electrons, cause the unwanted particle and heat flux onto the electrodes and the inner components of beamline (especially the temperature sensitive cryopump). The suppression of the stray electrons from the CRAFT accelerator is carried out via a series of design and simulation works. The paper focuses the influence of different magnetic field configurations on the stray electrons and the character of the ejecting electrons.

Acid-Catalyzed Hydrolysis of Hexacyanoferrate (III) to Prussian Blue via Sequential Mechanism

  • Youngjin Jeon
    • 대한화학회지
    • /
    • 제68권3호
    • /
    • pp.139-145
    • /
    • 2024
  • This study aims to elucidate the mechanism involved in the hydrolysis of the hexacyanoferrate(III) complex ion (Fe(CN)63-) and the mechanism leading to the formation of Prussian blue (FeIII4[FeII(CN)6]3·xH2O, PB) in acidic aqueous solutions at moderately elevated temperatures. Hydrolysis constitutes a crucial step in generating PB through the widely used single-source or precursor method. Recent PB syntheses predominantly rely on the single-source method, where hexacyanoferrate(II/III) is the exclusive reactant, as opposed to the co-precipitation method employing bare metal ions and hexacyanometalate ions. Despite the widespread adoption of the single-source method, mechanistic exploration remains largely unexplored and speculative. Utilizing UV-vis spectrophotometry, negative-ion mode liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and a devised reaction, this study identifies crucial intermediates, including aqueous Fe2+/3+ ions and hydrocyanic acid (HCN) in the solution. These two intermediates eventually combine to form thermodynamically stable PB. The findings presented in this research significantly contribute to understanding the fundamental mechanism underlying the acid-catalyzed hydrolysis of the hexacyanoferrate(III) complex ion and the subsequent formation of PB, as proposed in the sequential mechanism introduced herein. This finding might contribute to the cost-effective synthesis of PB by incorporating diverse metal ions and potassium cyanide.