• Title/Summary/Keyword: Negative corona discharge

Search Result 54, Processing Time 0.038 seconds

Experimental Investigation of Ion Mobility Measurements in Oxygen under Different Gas Pressures

  • Liu, Yun-Peng;Huang, Shi-long
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.852-857
    • /
    • 2017
  • In this paper, measurements of ion mobility were performed in oxygen at gas pressures of 44.52 - 101.19 kPa using the drift tube method. Over this pressure range, mobility values were within the limits of 1.796 to $3.821cm^2{\cdot}V^{-1}{\cdot}s^{-1}$ were determined and ion mobility shown to decrease non-linearly with increasing gas pressure towards a certain level of saturation. Ion mobility measured in air was lower than that measured in oxygen at the same gas pressure. Finally, a parameter correction method for calibrating the relationship between the ion mobility and gas pressure in oxygen was proposed.

Study on the Indoor Air Purification Technology by Using Nonthermal Plasma (비열 방전 플라즈마에 의한 실내 공기 청정기술 연구)

  • Jung, Jae-Seung;Lee, Heon-Gyeong;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.31-36
    • /
    • 2016
  • For the purpose of indoor air purification, air conditioner or purifier is generally used, but the long operating time induced the contamination by cumulation of bacteria in the air filter. The ozone sterilization method can be one of the effective sterilization method for this case. Ozone has not leave a secondary residual contaminants, as well as a strong sterilization power. In this study, nonthermal plasma technology is investigated as an ozone generator for the air filter sterilization. Additionally, nonthermal plasma technology is possible to obtain the generation of negative ions and electrostatic force by simply adjusting the applied voltage.

Bidirectional pulse generator for removal of flue gas (배기가스 처리용 양방향 펄스 전원)

  • 박정호;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.233-236
    • /
    • 1997
  • An investigation has been made of the various plasma chemistry reactions that occur in the corona discharge of an electrostatic precipitator operating in a typical flue gas. As the results of investigation, sulphur dioxide is removed principally by reactions with OH radicals to produce sulphuric acid, while nitrogen oxides are removed principally by reduction via the N radical to molecular nitrogen. If electrostatic precipitator\ulcorner used for flue gases are operated with positive voltages instead of negative dc voltages, there are significant reductions in the emission of the undesirable gases SO$_2$, NO, and NO$_2$. Thus, in this paper we design the bidirectional pulse generator for removal of flue gas, where the pulse width is more than 50[nsec] and the maximum output voltage is more than 100[kVl.

  • PDF

Electrohydrodynamic Water Droplet Ejection Characteristics from a Micro-Water-Nozzle (미세 수관 노즐의 전기유체역학적 수적 분사특성)

  • Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1632-1637
    • /
    • 2010
  • A micro-water-nozzle, as one of a cooling means of micro-electronic devices, has been proposed and investigated. The I-V characteristics of the micro-water-nozzle and effect of applied voltage on the meniscus formation and deformation and ejection processes of de-ionized water on the micro-water-nozzle tip have been investigated. The water ejection processes, such as a drop formation, a drop deformation, a dripping, a cone jet, and an atomization, were taken place on the micro-water-nozzle tip by the electrohydrodynamic forces acted by the DC and AC high voltages applied on the meniscus of the micro-water-nozzle tip. The I-V characteristics of the micro-water-nozzle-to-plate electrode system were different from that of the same metal-point electrode system, due to the meniscus formation and water droplet ejection at the nozzle tip. The positive and negative DC and AC high voltages showed the water droplets ejection, the ejection rates of 1.8, 1.5 and 1.2 g/h respectively, which, however, showed that the proposed micro-water-nozzle-to-plate electrode system could be used as one of an effective pumping means.