• Title/Summary/Keyword: Needle-shaped whisker

Search Result 3, Processing Time 0.018 seconds

Synthesis of Aluminum Nitride Whisker by Carbothermal Reaction I. Effect of Fluoride Addition (탄소환원질화법을 이용한 AIN Whisker의 합성 I. 불화물 첨가의 영향)

  • 양성구;강종봉
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.118-124
    • /
    • 2004
  • The properties of AlN made by carbothermal reaction depend on the starting materials, quantity of liquid, the liquid-vapor phase reaction, the N$_2$ flow rate, and the reaction temperature. AlN whisker was synthesized by the VLS and VS methods. Solid ${\alpha}$-A1$_2$O$_3$(AES-11) was carbothermally reduced with carbon black in a high-purity N$_2$ atmosphere with AlF$_3$ to cause whisker grown and additional aluminum liquid to increase whisker yield. Aluminum nitride was perfectly formed at reaction temperatures of 1600$^{\circ}C$. At reaction temperature higher than 1600$^{\circ}C$ the aluminum nitride was completely formed, while the composition remains unaffected. Needle-shaped whiskers formed best at 1600$^{\circ}C$ while higher temperatures disrupted whisker formation. Adding 0 to 15 wt% aluminum to the synthesis favorably affects the microstructure for formation of needle-shaped AlN whisker. Additions over 15 wt% degraded formation of AlN whisker.

Effects of Matrix Material Particle Size on Mullite Whisker Growth

  • Hwang, Jinsung;Choe, Songyul
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.313-319
    • /
    • 2021
  • Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 ℃, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 ℃. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75 % when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.

Precipitated Calcium Carbonate Synthesis by Simultaneous Injection to Produce Nano Whisker Aragonite

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Huh, Jae-Hoon;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.222-226
    • /
    • 2016
  • The synthesis of pure calcium carbonate nanocrystals was achieved using a simultaneous injection method to produce nano particles of uniform size. These were characterized using scanning electron microscopy and powder X-ray diffraction. The nano particles were needle-shaped aragonite polymorphs, approximately 100-200 nm in length. The aragonite polymorph of calcium carbonate was prepared using aqueous solutions of $CaCl_2$ and $Na_2CO_3$, which were injected simultaneously into double distilled water at $50^{\circ}C$ and then allowed to react for 1.5 h. The resulting whisker-type nano aragonite with high aspect ratio (30) is biocompatible and potentially suitable for applications in light weight plastics, as well as in the medical, pharmaceutical, cosmetic and paint industries.