• Title/Summary/Keyword: Needle penetrometer

Search Result 2, Processing Time 0.02 seconds

Estimation of Uniaxial Compressive Strength of Weak Rocks Using Needle Penetrometer (침관입시험을 이용한 연약암반의 일축압축강도 추정)

  • Kang, Seong-Seong;Obara, Yuzo;Je, Dong-Kwang;Park, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • This study is to estimate the uniaxal compressive strength (UCS) for the weak rocks using needle penetrometer test. The appropriate ratio of the artificial rocks for this test was cement (C):bentonite (B):water (W) = 1.3:0.7:2.3 or 1.5:0.5:2.0. From the relationship between needle penetration resistance (NPR) measured by needle penetrometer test and an estimated UCS, NPR and UCS tended to increase with increasing the curing period. Also from the relationship between the measured NPR and the measured UCS, NPR-UCS was linearly increased with the curing periods of 3-day to 14-day regardless of the ratio, then in the curing periods of 14-day to 28-day it was nearly constant. In conclusion, the overall relationship between NPR and UCS shows a linear relation for the most part, it means that UCS is possible to be estimated from NPR by needle penetrometer test in the case of weak rocks.

Characteristic of Coastal Soil Improvement by MICP Technology Using Sea Water (해수를 사용한 MICP 기술의 연안 지반 개량시 발생하는 특성 분석)

  • Sojeong Kim;Jinung Do
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.13-21
    • /
    • 2023
  • Mean sea level has recently been rising due to global warming causing coastal erosion. As Korea is peninsula, the land loss due to coastal erosion is critical. An approach in this study is cementing the coastal area using bacteria, which is called microbially induced carbonate precipitation (MICP). This study tried to see how fresh water and sea water work with MICP as a solvent. Ureolytic activity during the MICP reaction was measured with deionized and sea water. A soil column was prepared to evaluate the strength of MICP-treated sand. Sands were treated by MICP with surface percolation method. As the treatmen t style was different with other conventional methods, several methods were proposed to properly evaluate the MICP-treated sand surface. A micro-scale evaluation was performed to assess the mineral structure treated by different solvents. As results, sea water rendered the ureolytic reaction slower. A needle penetrometer worked well to evaluate the MICP-treated sand surface. This study confirmed the utilization of sea water is feasible as the solvent of MICP.