• Title/Summary/Keyword: Necking

Search Result 155, Processing Time 0.03 seconds

Study of anisoptopy of sheet metals (압연강판의 이방성에 관한 연구)

  • 인정제
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.153.1-156
    • /
    • 1999
  • Based upon the experimental data from multi-stage tensile loading at angles to the rolling direction of steel sheets, anisotropic hardening rules are proposed. Experiments show that orthotropic anisotropy is maintained and the orientations of orthotropy axes are changed during tensile loading. A phenomenological model is proposed which includes the rotations of orthotropy axes, work hardening and kinematic hardening. Using the model, uniaxial tensile stress, R-value and tensile necking strain are predicted and compared with the experimental data.

  • PDF

Determination of a critical damage by experiment and analysis of tensile test (인장시험의 실험과 해석 결과를 이용한 임계손상도의 결정)

  • Jang, S.M.;Eom, J.G.;Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.292-296
    • /
    • 2008
  • A new method of evaluating critical damage values of commercial materials is presented in this paper. The method is based on the previous study of the methodology [1] of acquisition of true stress-strain curves or flow stress curves over large strain from the tensile test in which the flow stress is described by the Hollomon law-like form, that is, by the strain dependent strength coefficient and the strain hardening exponent. The strain hardening exponent is calculated from the true strain at the necking point to meet the Considere condition. The strength coefficient is assumed to be constant before necking and represented by a piecewise linear function of strain after necking. With the predicted flow stress, a tensile test is simulated by a rigid-plastic finite element method with higher accuracy of less than 0.5% error between experiments and predictions. The instant when the fracture begins and thus the critical damage is obtained is determined by observing the stress variation at the necked region. It is assumed that the fracture due to damage begins when the pattern of stress around the necked region changes radically. The method is applied to evaluate the critical damage of a low carbon steel.

  • PDF

A Study on the CdTe Single Crystal Growth by Vertical Bridgman Method (수직 Bridgman 법에 의한 CdTe 단결정 성장에 관한 연구)

  • Lee, Jong-Ki;Kim, Wook;Baik, Hong-Koo
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.324-331
    • /
    • 1990
  • The single crystal of CdTe was grown by modified 6 zone Bridgman method under the conditions of excess Te and excess Cd. To prevent the constitutional supercooling, the crystal growth was done under the temperature gradient of $17^{\circ}C/cm$ in front of the solid /liquid interface and the growth rate was 3mm/hr. The grain morphologies and the growth mechanism were investigated in excess Te and excess Cd conditions. The grain size of excess Te crystal was increased with an increase of the distance from the tip but, in the case of excess Cd crystal, single crystal was not obtained because of the cavities due to the excess Cd vapors so that the grain size was not increased with an increase of the distance from the tip. In addition, the growth of single crystal of CdTe was done with repeated necking ampoule. It was found that the necking had no effects on the grain selection because the cavities trapped in the necking portion acted as heterogeneous nucleation sites.

  • PDF

Dieless Wire Drawing by Enforced Necking Method (강제 네킹에 의한 금속 와이어 인발)

  • Huh, You;Kim, Seung-Hoon;Kim, Ihn-Seok;Paik, Young-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.98-105
    • /
    • 2007
  • In modern industries, materials are required that possess multi-functional properties and at the same time flexibility in their shapes with structural stability. The major technology realizing this requirement consists of thinning metal wires and laying them with stable contact nodes. This research has dealt with a new method to manufacture thin wires by drawing without applying dies, but with introducing enforced necking, which enables to process multi-ends. Based on the new method, the process dynamics was modelled and its steady-state characteristics were analyzed. Results showed that the profiles of the material velocity in the drawing zone increased with a downward convex shape, while the cross-sectional area decreased with the shape of upward convex. The microwave heating turned out to be effective in wire drawing, but dependent on the input feeding direction. The variation in the diameters of the drawn wires was negatively affected by increasing the drawing ratio.

Process Modification and Numerical Simulation for an Outer Race of a CV Joint using Multi-Stage Cold Forging (등속조인트용 외륜의 다단 냉간 단조공정을 위한 공정개선 및 유한요소 해석)

  • Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.211-220
    • /
    • 2014
  • The outer race of a constant velocity (CV) joint having six inner ball grooves has traditionally been manufactured by multi-stage warm forging, which includes forward extrusion, upsetting, backward extrusions, necking, ironing and sizing, and machining. In the current study, a multi-stage cold forging process is examined and an assessment for replacing and modifying the conventional multi-stage warm forging is made. The proposed procedure is simplified to the backward extrusion of the conventional process, and the sizing and necking are combined into a single sizing-necking step. Thus, the forging surface of the six ball grooves can be obtained without additional machining. To verify the suitability of the proposed process, a 3-dimensional numerical simulation on each operation was performed. The forging loads were also predicted. In addition, a structural integrity evaluation for the tools was carried out. Based on the results, it is shown that the dimensional requirements of the outer race can be well met.

An Experimental Method for Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1607-1613
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the in-plane strain. In addition, the effect of location where the displacement and strain are measured is explored.

Transition of Rivulet Flow from Linear to Droplet Stream

  • Kim, Ho-Young;Kim, Jin-Ho;Kang, Byung-Ha;Lee, Seung-Chul;Lee, Jae-Heon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.147-152
    • /
    • 2002
  • When a liquid is supplied through a nozzle onto a relatively non-wetting inclined solid surface, a narrow rivulet forms. There exist several regimes of rivulet flow depending on various flow conditions. In this paper, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified.

A Study of Rivulet Flow on Inclined Surface (경사면에서의 리뷸릿 유동에 관한 연구)

  • Kim, Jin-Ho;Kim, Ho-Young;Lee, Jae-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.576-581
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively nonwetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curved motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet's curved motion A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF