• Title/Summary/Keyword: Necking

Search Result 155, Processing Time 0.064 seconds

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging (액압벌징에 의한 보온용기의 제조방법 개발)

  • Chung, Joon-Ki;Cho, Woong-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.24-31
    • /
    • 1999
  • Bulging is a forming method to shape of die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at the both ends of tube. The diameter of tube expands by hydraulic pressure in tube. at the same time, thrust at the both ends of tube. pushes tube in the direction of expansion to obtain high expanding rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by the combination method of bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

The Effects of Thickness on the Plastic Instability under Uniaxial Tension in Sheet Metal (판재의 일축인장 소성불안정에 미치는 두께의 영향)

  • Han, K. T.;Kang, D. M.;Koo, Y.;Baek, N. J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.58-64
    • /
    • 1989
  • Plastic instability in uniaxial tension of commercial purity Al has been studied with the emphasis of effects of thickness in cold worked specimens and recrystallized specimens. The thickness change gave rise to change in stress state and the amount of strain localization in specimen after diffuse necking. Therefore the thickness of speci- men could control modes of plastic instability. Regardless of recrystallized or cold worked state, the necking mode changed from diffuse necking to local necking, at about 1.5 .approx. 2 mm in thickness.

  • PDF

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging

  • Chung, Joon-Ki;Cho, Woong-Shick
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.40-46
    • /
    • 2001
  • Bulging is a forming method to shape die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at both ends of the tube. The diameter of tube expands by hydraulic pressure in tube. At the same time, thrust at both ends of the tube pushes tube in the direction of expansion to obtain high expansion rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by combining bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

Relationship between Side-Necked Volume in a SENB specimen and Plastic Deformation Volume (SENB 시험편의 측면함몰과 소성영역관계)

  • Lee, Jeong-Hyun;Kim, Do-Hyung;Kim, Dong-Hak;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.420-425
    • /
    • 2004
  • Lee and Kang measured side-necking deformation near a crack-tip for CT specimen using Stereoscopic Digital Speckle Photography and Digital Image Correlation. In this work the same technique was applied to SENB specimen. We happened to find that the deformation shape of the side-necking is similar to the one of plastic region estimated by McClictock using slip line theory. Based on volume constancy of plastic deformation as well as this finding, it is expected that a linear relationship holds between the volume of plastic deformation region and the one of side-necking upon the lateral surface of a specimen. To prove the idea, a preliminary study has been performed using 3-D finite element method on a model with modified boundary layer formulation. As the result, it is shown that the idea works well with acceptable error.

  • PDF

Influence of DIC Frame Rate on Experimental Determination of Instability and Fracture Points for DP980 Sheets under Various Loading Conditions (다양한 하중 조건에서 DP980 판재의 불안정성 및 파단점 결정시 DIC Frame Rate의 영향)

  • Noh, E.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • The past recent years have seen an increasing use of high-strength steel sheets in the automotive industry. However, the formability and damage prediction of these materials requires accurate acquisition of necking and fracture strains. Digital image correlation (DIC) is used to accurately capture the necking and fracture strains during testing. The fact that single time points of capturing vary with frame rate makes the need for an investigation necessary. For the high-strength steel DP980, the frame-rate dependences of the final necking and fracture strains values are analyzed here. To eliminate the influence of gauge length, the strains were measured locally by DIC. Results for three specimen shapes obtained with frame rates of 1 and 900 fps (frames per second) were considered and based on them, triaxiality failure diagrams (TFD) are established. It was observed that after diffuse necking, the deformation path departed from the initially linear one, and the stress triaxiality grew with ongoing deformation. It was further revealed that the frame rate-dependence of the necking strain was rather low (< 2%), whereas the fracture strain could be underestimated by up to 8% when the lower frame rate of 1 fps was used (compared with 900 fps). In this study, this issue is investigated while taking into consideration the three different triaxialities. These results demonstrate the importance of choosing an appropriate frame rate for the determination of necking and fracture strains in particular.

Evaluation on Strain and Necking Region of the Rebar by Using Image Processing Method (영상분석기법을 이용한 철근의 변형률 및 넥킹구간 평가)

  • Cheung, Jin-Hwan;Lee, Jong-Han;Woo, Tae-Ryeon;Jung, Chi-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.33-42
    • /
    • 2017
  • This study conducted uniaxial tension tests on D10, D19, D29, and D35 SD400 steel-grade rebar and evaluated the strain distributions and necking regions to provide basic data for resolving differences between evaluation methods. Owing to the limitations of the existing measurement methods, this study conducted detailed evaluations of the strain of the rebar and necking regions using image processing, which is almost limitless on the measurement range and can easily distinguish measurement regions. The strain was concentrated at the region where necking occurred when the rebar approached its ultimate strength, which was successfully confirmed through image processing. The correlation between the length of the necking region and the diameter of the rebar could be analyzed by evaluating the necking region that occurs during the ultimate behavior of the rebar. According to the results, the length of the necking region is around 1.5~2.5 times the diameter of the rebar.

Relationship between Side-Necking and Plastic Zone Size at Fracture (파괴 시 발생하는 측면함몰과 소성영역크기와의 관계)

  • Kim, Do-Hyung;Kim, Dong-Hak;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.365-371
    • /
    • 2004
  • Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixities $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed.

  • PDF

True Stress-True Strain Curves Obtained by Simulating Tensile Tests Using Finite Element Program (인장시험을 유한요소해석 시뮬레이션하여 진응력-진변형도 곡선을 결정하는 방법)

  • Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In the tensile test necking occurs at the maximum load point and non-uniform stress state is generated in this section. The equivalent stress becomes quite different from the axial stress as necking proceeds. Methods for obtaining the true stress-true strain curves, by overcoming difficulties due to the necking phenomena, have been developed by many authors. One of the methods based on the finite element analysis simulation is a very promising method. In this paper, general-purpose finite element program is used to simulate the tensile test. A round specimen and a flat specimen prepared from the same steel block are tested and simulated. The true stress-true strain curves are determined without assuming that the material follows Hollomon's law.

Bulging Process of Liquid Rocket Combustion Chamber Nozzle (액체로켓 연소기 노즐의 벌징 공정)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.271-278
    • /
    • 2008
  • A study has been conducted on the bulging process of liquid rocket engine nozzle which is essential to the manufacturing regenerative cooling combustion chamber. Mechanical properties of the material used for the bulging were experimentally obtained by tension tests. Deformation of the bulged nozzle was confirmed by a structural analysis. The developed bulging process and the deformation analysis result were confirmed by manufacturing of the bulged nozzle specimens and the bulging test. There has been a bulging failure among 7 bulged specimens due to the necking of the material. The cause of necking was investigated by comparing microstructure of the material. The investigation has revealed grain size of the material has considerable effect on the occurrence of the necking.