• Title/Summary/Keyword: Nearest data

Search Result 749, Processing Time 0.019 seconds

Locality-Sensitive Hashing Techniques for Nearest Neighbor Search

  • Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • When the volume of data grows big, some simple tasks could become a significant concern. Nearest neighbor search is such a task which finds from a data set the k nearest data points to queries. Locality-sensitive hashing techniques have been developed for approximate but fast nearest neighbor search. This paper introduces the notion of locality-sensitive hashing and surveys the locality-sensitive hashing techniques. It categories them based on several criteria, presents their characteristics, and compares their performance.

On the Use of Sequential Adaptive Nearest Neighbors for Missing Value Imputation (순차 적응 최근접 이웃을 활용한 결측값 대치법)

  • Park, So-Hyun;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1249-1257
    • /
    • 2011
  • In this paper, we propose a Sequential Adaptive Nearest Neighbor(SANN) imputation method that combines the Adaptive Nearest Neighbor(ANN) method and the Sequential k-Nearest Neighbor(SKNN) method. When choosing the nearest neighbors of missing observations, the proposed SANN method takes the local feature of the missing observations into account as well as reutilizes the imputed observations in a sequential manner. By using a Monte Carlo study and a real data example, we demonstrate the characteristics of the SANN method and its potential performance.

Nearest neighbor and validity-based clustering

  • Son, Seo H.;Seo, Suk T.;Kwon, Soon H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.337-340
    • /
    • 2004
  • The clustering problem can be formulated as the problem to find the number of clusters and a partition matrix from a given data set using the iterative or non-iterative algorithms. The author proposes a nearest neighbor and validity-based clustering algorithm where each data point in the data set is linked with the nearest neighbor data point to form initial clusters and then a cluster in the initial clusters is linked with the nearest neighbor cluster to form a new cluster. The linking between clusters is continued until no more linking is possible. An optimal set of clusters is identified by using the conventional cluster validity index. Experimental results on well-known data sets are provided to show the effectiveness of the proposed clustering algorithm.

Fuzzy Kernel K-Nearest Neighbor Algorithm for Image Segmentation (영상 분할을 위한 퍼지 커널 K-nearest neighbor 알고리즘)

  • Choi Byung-In;Rhee Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.828-833
    • /
    • 2005
  • Kernel methods have shown to improve the performance of conventional linear classification algorithms for complex distributed data sets, as mapping the data in input space into a higher dimensional feature space(7). In this paper, we propose a fuzzy kernel K-nearest neighbor(fuzzy kernel K-NN) algorithm, which applies the distance measure in feature space based on kernel functions to the fuzzy K-nearest neighbor(fuzzy K-NN) algorithm. In doing so, the proposed algorithm can enhance the Performance of the conventional algorithm, by choosing an appropriate kernel function. Results on several data sets and segmentation results for real images are given to show the validity of our proposed algorithm.

Performance Improvement of Nearest-neighbor Classification Learning through Prototype Selections (프로토타입 선택을 이용한 최근접 분류 학습의 성능 개선)

  • Hwang, Doo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Nearest-neighbor classification predicts the class of an input data with the most frequent class among the near training data of the input data. Even though nearest-neighbor classification doesn't have a training stage, all of the training data are necessary in a predictive stage and the generalization performance depends on the quality of training data. Therefore, as the training data size increase, a nearest-neighbor classification requires the large amount of memory and the large computation time in prediction. In this paper, we propose a prototype selection algorithm that predicts the class of test data with the new set of prototypes which are near-boundary training data. Based on Tomek links and distance metric, the proposed algorithm selects boundary data and decides whether the selected data is added to the set of prototypes by considering classes and distance relationships. In the experiments, the number of prototypes is much smaller than the size of original training data and we takes advantages of storage reduction and fast prediction in a nearest-neighbor classification.

Missing values imputation for time course gene expression data using the pattern consistency index adaptive nearest neighbors (시간경로 유전자 발현자료에서 패턴일치지수와 적응 최근접 이웃을 활용한 결측값 대치법)

  • Shin, Heyseo;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.269-280
    • /
    • 2020
  • Time course gene expression data is a large amount of data observed over time in microarray experiments. This data can also simultaneously identify the level of gene expression. However, the experiment process is complex, resulting in frequent missing values due to various causes. In this paper, we propose a pattern consistency index adaptive nearest neighbors as a method of missing value imputation. This method combines the adaptive nearest neighbors (ANN) method that reflects local characteristics and the pattern consistency index that considers consistent degree for gene expression between observations over time points. We conducted a Monte Carlo simulation study to evaluate the usefulness of proposed the pattern consistency index adaptive nearest neighbors (PANN) method for two yeast time course data.

Random projection ensemble adaptive nearest neighbor classification (랜덤 투영 앙상블 기법을 활용한 적응 최근접 이웃 판별분류기법)

  • Kang, Jongkyeong;Jhun, Myoungshic
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.401-410
    • /
    • 2021
  • Popular in discriminant classification analysis, k-nearest neighbor classification methods have limitations that do not reflect the local characteristic of the data, considering only the number of fixed neighbors. Considering the local structure of the data, the adaptive nearest neighbor method has been developed to select the number of neighbors. In the analysis of high-dimensional data, it is common to perform dimension reduction such as random projection techniques before using k-nearest neighbor classification. Recently, an ensemble technique has been developed that carefully combines the results of such random classifiers and makes final assignments by voting. In this paper, we propose a novel discriminant classification technique that combines adaptive nearest neighbor methods with random projection ensemble techniques for analysis on high-dimensional data. Through simulation and real-world data analyses, we confirm that the proposed method outperforms in terms of classification accuracy compared to the previously developed methods.

On the Use of Modified Adaptive Nearest Neighbors for Classification (수정된 적응 최근접 방법을 활용한 판별분류방법에 대한 연구)

  • Maeng, Jin-Woo;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1093-1102
    • /
    • 2010
  • Even though the k-Nearest Neighbors Classification(KNNC) is one of the popular non-parametric classification methods, it does not consider the local features and class information for each observation. In order to overcome such limitations, several methods have been developed such as Adaptive Nearest Neighbors Classification(ANNC) and Modified k-Nearest Neighbors Classification(MKNNC). In this paper, we propose the Modified Adaptive Nearest Neighbors Classification(MANNC) that employs the advantages of both the ANNC and MKNNC. Through a real data analysis and a simulation study, we show that the proposed MANNC outperforms other methods in terms of classification accuracy.

Robust Similarity Measure for Spectral Clustering Based on Shared Neighbors

  • Ye, Xiucai;Sakurai, Tetsuya
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.540-550
    • /
    • 2016
  • Spectral clustering is a powerful tool for exploratory data analysis. Many existing spectral clustering algorithms typically measure the similarity by using a Gaussian kernel function or an undirected k-nearest neighbor (kNN) graph, which cannot reveal the real clusters when the data are not well separated. In this paper, to improve the spectral clustering, we consider a robust similarity measure based on the shared nearest neighbors in a directed kNN graph. We propose two novel algorithms for spectral clustering: one based on the number of shared nearest neighbors, and one based on their closeness. The proposed algorithms are able to explore the underlying similarity relationships between data points, and are robust to datasets that are not well separated. Moreover, the proposed algorithms have only one parameter, k. We evaluated the proposed algorithms using synthetic and real-world datasets. The experimental results demonstrate that the proposed algorithms not only achieve a good level of performance, they also outperform the traditional spectral clustering algorithms.

A KD-Tree-Based Nearest Neighbor Search for Large Quantities of Data

  • Yen, Shwu-Huey;Hsieh, Ya-Ju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.459-470
    • /
    • 2013
  • The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.