• Title/Summary/Keyword: Near-infrared transmission spectroscopy

Search Result 29, Processing Time 0.023 seconds

INLINE NEAR INFRARED (NIR) SPECTROSCOPY FOR PROCESS CONTROL IN POLYMER EXTRUSION

  • Rohe, Thomas;Koelle, Sabine;Becker, Wolfgang;Eisenreich, Norbert;Eyerer, Peter
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1082-1082
    • /
    • 2001
  • Extrusion is one of the most important processes in polymer industry. The characterization of the polymer melt during processing will improve this process noticeably, One possibility of characterizing the actual processed polymer melt is the inline near infrared (NIR) spectroscopy, With this method several polymer properties can be observed during processing, e.g. composition, moisture ormechanical properties of the melt. For this purpose probes for transmission and reflection measurements have been developed, withstanding the high temperatures and pressures appearing during extrusion process (tested up to 300$^{\circ}C$ and 10 ㎫). For the transmission system an optical bypass was developed to eliminate disturbing spectral influences and hence increase the long term stability, which is the prerequisite for an industrial application. Measurements in transmission and reflection produced comparable results (or blending processes, where the prediction error was less than 1%. An optimum RMSEP of only 0.24% was found for preprocessed polymer blends measured in transmission on a laboratory extruder. A transflection measurement allowed for the first time the recording of relevant NIR-spectra in the screw area of an extruder. The application to a (PE+PP) blending process delivered promising results. This new measurement mode allows the observation of the ongoing processes within the screw area, which is of maximum Interest for reactive extrusion processes. Due to economic reasons the calibration transfer between different extrusion systems is also of high importance. Investigations on simulated and real-world spectra showed that a calibration transfer is possible. A new method alternatively to the well-known direct standardization procedures was developed, which is based on an automatic data pretreatment. This procedure delivers comparable results for the calibration transfer. Overall this paper presents concepts, components and algorithms for the inline near infrared (NIR) spectroscopy for polymer extrusion, which allows the use of it in a real industrial extrusion process.

  • PDF

APPLICATION OF A MULTI-WAVELENGTH NIR DIODE LASER ARRAY FOR NON-DESTRUCTIVE FOOD ANALYSIS

  • Tauscher, Bernhard;Butz, Peter;Lindauer, Ralf
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3123-3123
    • /
    • 2001
  • Near infrared (NIR) spectroscopy has become a widely used method in food and beverage analysis because of its speed, accuracy and the simplicity of sample preparation. One of the basic requirements of NIR instruments is a wide dynamic range if weak, or small, absorption changes or concentrations are to be measured. Thus the instrument must be sufficiently luminous, and efficient, to enable measurements to be made in a reasonably short time, as for some applications (e.g. sorting) short response times are essential. Diode lasers function the same way as lasers but linewidths are not as narrow as typical lasers. In this work an array of seven laser diodes (in the range of 750-1100 nm) with energy outputs of around hundred milliwatts each were combined with a fast diode array spectrometer (400-1100 nm, 1024 pixels, integration time from 3 ms) as detector. Measurements in transmission mode were performed in solutions of sugars in aqueous solutions and in deuteriumoxide. The feasibility of non-destructive measurements in transmission mode was investigated for different fruits and vegetables.

  • PDF

A Study on the Performance Characteristics of Portable Analyzer for Determination of Sugar Content in Citrus Unshiu using Near Infrared Spectroscopy (근적외선 분광기술을 이용한 휴대용 감귤 당도 선과기 성능특성에 관한 연구)

  • Yoon, Sung-Un;Ma, Sang-Dong;Kim, Myung-Yun;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.1-6
    • /
    • 2006
  • The purpose of this study is to develop to portable near infrared analyzer measuring the sugar content of the fruits on a tree before harvesting ones. The portable near infrared system consists of a tungsten lamp, a coaxial optical fiber bundle and a multi-channel detector, which has 256 pixels and a concave transmission grating. Reflectance NIR spectra of orange were recorded by using a coaxial optical fiber bundle. The spectra were collected over the spectral range $400{\sim}1100nm$. Partial least squares regression(PLSR) was applied for a calibration and validation for determination of sugar contents. The multiple correlation coefficient was 0.99 and standard errors of calibration(SEC) was 0.069 brix. The calibration model predicted the sugar content for validation set with standard errors of prediction(SEP) of 0.092 brix. The sugar content in fruits was successfully quantified using the portable near infrared analyzer.

Rancidity Prediction of Soybean Oil by Using Near-Infrared Spectroscopy Techniques

  • Hong, Suk-Ju;Lee, Ah-Yeong;Han, Yun-hyeok;Park, Jongmin;So, Jung Duck;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.219-228
    • /
    • 2018
  • Purpose: This study evaluated the feasibility of a near-infrared spectroscopy technique for the rancidity prediction of soybean oil. Methods: A near-infrared spectroscopy technique was used to evaluate the rancidity of soybean oils which were artificially deteriorated. A soybean oil sample was collected, and the acid values were measured using titrimetric analysis. In addition, the transmission spectra of the samples were obtained for whole test periods. The prediction model for the acid value was constructed by using a partial least-squares regression (PLSR) technique and the appropriate spectrum preprocessing methods. Furthermore, optimal wavelength selection methods such as variable importance in projection (VIP) and bootstrap of beta coefficients were applied to select the most appropriate variables from the preprocessed spectra. Results: There were significantly different increases in the acid values from the sixth days onwards during the 14-day test period. In addition, it was observed that the NIR spectra that exhibited intense absorption at 1,195 nm and 1,410 nm could indicate the degradation of soybean oil. The PLSR model developed using the Savitzky-Golay $2^{nd}$ order derivative method for preprocessing exhibited the highest performance in predicting the acid value of soybean oil samples. onclusions: The study helped establish the feasibility of predicting the rancidity of the soybean oil (using its acid value) by means of a NIR spectroscopy together with optimal variable selection methods successfully. The experimental results suggested that the wavelengths of 1,150 nm and 1,450 nm, which were highly correlated with the largest absorption by the second and first overtone of the C-H, O-H stretch vibrational transition, were caused by the deterioration of soybean oil.

Quantification of an active ingredient in tablets by NIR transmission measurements

  • Niemoller, Andreas;Schmidt, Angela;Weis, Aaron;Weiler, Helmut
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4114-4114
    • /
    • 2001
  • For the quality control of tablets several parameters have to be checked. The most important one is the content of an active ingredient which has to match a narrow range around the designated content. The only useful measurement mode is transmission which provides information of the complete tablet. A measurement in diffuse reflectance would register only the surface which is useless especially in case of a coated tablet. In this work tablets for a clinical study (placebo/verum studies) with very low concentrations of the active ingredient were measured. The concentration range was 0 to 6 mg with a total weight of the tablets of 105 mg, leading to a highest concentration of the active component of 5.7% by weight. Especially the spectroscopic distinction between the placebo and the low dosage forms with 0.25 and 0.5 mg active agent requires an extraordinarily accurate sampling technique. Using the VECTOR 22/N-T in transmission mode allows the collection of the information from the complete tablets. A quantitative PLS-model with transmission spectra from the tablets described above shows that the active substance can be predicted with a RMSECV (root mean square error of cross validation) of 0.04% absolute for this special application. The results are compared with those of measurements in diffuse reflectance using different accessories.

  • PDF

In Situ Estimation of the Constituents of Green Soybean (Edamame) Pod using Near-Infrared Transmission Spectroscopy

  • Suzuki, Michiru;Katahira, Mitsuhiko;Natsuga, Motoyasu
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.352-356
    • /
    • 2014
  • Purpose: We estimated the dietary qualities of green soybean (edamame) by using a specialized NIR transmission spectrometer to determine the constitutive properties of the soybean, such as the sucrose content and ninhydrine reaction quantity (NRQ; defined by the ninhydrine reaction, which has a high positive correlation with the total free amino acids), with the purpose of establishing a quality assurance system. Methods: We used a newly developed spectrometer probe that enables in situ estimation of the constituents of the soybean. Results: The calibration results obtained using a wavelength range of 760-960 nm were characterized by $R^2$ = 0.57 and standard error of cross-validation (SECV) of 0.78% for sucrose, and $R^2$ = 0.59 and SECV = 0.35% for NRQ. Conclusions: These results are inferior to those of our previous study obtained using a specialized bench-type transmission spectrometer. The poorer results are attributed to several possible reasons, including the effect of direct sunlight and the unstable sample presentation. We plan to conduct further study using improved optical layout and sample presentation.

Wavelength selection by loading vector analysis in determining total protein in human serum using near-infrared spectroscopy and Partial Least Squares Regression

  • Kim, Yoen-Joo;Yoon, Gil-Won
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4102-4102
    • /
    • 2001
  • In multivariate analysis, absorbance spectrum is measured over a band of wavelengths. One does not often pay attention to the size of this wavelength band. However, it is desirable that spectrum is measured at only necessary wavelengths as long as the acceptable accuracy of prediction can be met. In this paper, the method of selecting an optimal band of wavelengths based on the loading vector analysis was proposed and applied for determining total protein in human serum using near-infrared transmission spectroscopy and PLSR. Loading vectors in the full spectrum PLSR were used as reference in selecting wavelengths, but only the first loading vector was used since it explains the spectrum best. Absorbance spectra of sera from 97 outpatients were measured at 1530∼1850 nm with an interval of 2 nm. Total protein concentrations of sera were ranged from 5.1 to 7.7 g/㎗. Spectra were measured by Cary 5E spectrophotometer (Varian, Australia). Serum in the 5 mm-pathlength cuvette was put in the sample beam and air in the reference beam. Full spectrum PLSR was applied to determine total protein from sera. Next, the wavelength region of 1672∼1754 nm was selected based on the first loading vector analysis. Standard Error of Cross Validation (SECV) of full spectrum (1530∼l850 nm) PLSR and selected wavelength PLSR (1672∼1754 nm) was respectively 0.28 and 0.27 g/㎗. The prediction accuracy between the two bands was equal. Wavelength selection based on loading vector in PLSR seemed to be simple and robust in comparison to other methods based on correlation plot, regression vector and genetic algorithm. As a reference of wavelength selection for PLSR, the loading vector has the advantage over the correlation plot since the former is based on multivariate model whereas the latter, on univariate model. Wavelength selection by the first loading vector analysis requires shorter computation time than that by genetic algorithm and needs not smoothing.

  • PDF

Determination of Rice Milling Ratio by Visible / Near-Infrared Spectroscopy (가시광선 / 근적외선 분광 분석법을 이용한 쌀의 정백수율 측정)

  • 김재민;민봉기;최창현
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.333-342
    • /
    • 1997
  • The objective of this research was to develop model equations for measuring rice milling ratio by using visible / HIR spectroscopy. Twelve kinds of brown rice(n = 149) were milled to obtain various milling ratio ranged from 86% to 94%. Visible/NIR spectra were collected with a spectrophotometer with sample transport module. The reflectance and transmission spectra were measured in the range of 400~2, 500nm and 600~1, 400nm, respectively, with 2 nm intervals. Multiple linear regression(MLR), Partial least square (PLS), and Artificial neural network(ANN) were used to develop models. Model developed with reflectance spectra showed better prediction results then those with transmission spectra. The MLR model with six-wavelength obtained from first derivative spectra gave to the best results for measuring the rice milling ratio(SEP = 0.535, , $r^2$ = 0.980). The PLS model(SEP = 0.604, $r^2$= 0.976) and ANN model(SEP = 0.566, $r^2$= 0.978) also can be used to determine the rice milling ratio effectively.

  • PDF

Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles

  • Sivakumar, D.;Naidu, K. Chandra Babu;Nazeer, K. Prem;Rafi, M. Mohamed;kumar, G. Ramesh;Sathyaseelan, B.;Killivalavan, G.;Begam, A. Ayisha
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.230-238
    • /
    • 2018
  • Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared without using surfactants to assess their stability at different time intervals. The synthesized particles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and energy dispersive spectroscopy. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images of the samples were also investigated. The average particle size was measured to be 12.7 nm even in the polydispersed form. The magnetic and dielectric characteristics of the $Fe_3O_4$ nanoparticles have also been studied and discussed in detail.

NEAR INFRARED REFLECTANCE SPECTROSCOPY AS A TOOL TO PREDICT QUALITATIVE AND QUANTITATIVE MEAT AND BONE MEAL PRESENCE IN COMPOUND FEEDS

  • Fernandez, Maria;Martinez, Adela;Modrono, Sagrario;De La Roza, Begona
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1269-1269
    • /
    • 2001
  • The Bovine Spongiform Encephalopathy (BSE) is one of the more important problems that have affected the economy of european cattles and the Public Safety. Their transmission is mainly through digestive system, and the compound feeds made with animal proteins are one source of infection for healthy cows. Nowadays the official method for meat and bone meal (MBM) detection in compound feeds is a microscopy technique. However, this methodology is subjective, and that alter the fact to make one exhaustive quantitative analysis and one differentiation between mammalian and poultry bones. In addition, the separation of the differents fractions in a sample by density before the analysis, requires the use of organochlorates products as $CCl_4$, which produce serious damages in the atmosphere ozone content. NIR methodology is another possible way to confirm and identifying animal ingredients in compound feeds, Its capabilities for quantitative and qualitative analysis of foods and feeds has been enought demonstrated. The objective of this work was to use NIR as a tool to make an qualitative and quantitative analysis and a prediction of the meat and bone meal presence in compound feeds from North Spain cattle farms. Using a global population of compound feeds, on make three different groups depending of MBM percentage presence (0, 0-100, 100), to build and validate one calibration equation to determine MBM content and make one discriminant analysis between these three groups. The preliminary dates obtained with another differents samples of known composition showed promising results.

  • PDF