• Title/Summary/Keyword: Near-infrared Absorption

Search Result 175, Processing Time 0.026 seconds

Near-IR Spectral Features of Haze Particles in the Atmosphere of Titan

  • Kim, Sang Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.62.1-62.1
    • /
    • 2013
  • The Cassini/Visual Infrared Mapping Spectrometer (VIMS) observed the sun through the atmosphere of Titan, and provided vertically-resolved 63 spectra from 49 km to 987 km for the 1 - 5 micron range (Bellucci, 2008). Bellucci et al. (2009) analyzed selected spectral ranges where the band absorptions of $CH_4$ and CO are strong by constructing synthetic spectra including $CH_4$ and CO lines, but without including haze absorptions in their synthetic spectra. Kim et al. (2011) and Sim et al. (2013) were able to extract detailed spectral features of fundamental (Dv = 1) and overtone (Dv = 2) bands of the haze from the VIMS spectra by excluding the adjacent influences of strong $CH_4$ absorptions using a radiative transfer program, which includes effects of absorption and emission of lines of these molecules, and absorption and scattering of haze particles. In this presentation, we extend our detailed analyses to other remaining wavelengths in order to provide the spectral characteristics of the Titanian haze for the entire 1 - 5 micron range and to identify any additional haze spectral features and an unidentified feature near 4.3 microns reported by Bellucci et al. (2009).

  • PDF

ICE ABSORPTION FEATURES IN NIR SPECTRA OF GALACTIC OBJECTS

  • Mori, Tamami I.;Onaka, Takashi;Sakon, Itsuki;Ohsawa, Ryou;Kaneda, Hidehiro;Yamagishi, Mitsuyoshi;Okada, Yoko;Tanaka, Masahiro;Shimonishi, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.105-107
    • /
    • 2017
  • We present results of AKARI/IRC near-infrared (NIR) slit-spectroscopy ($2.5-5.0{\mu}m$, R ~ 100) of Galactic sources, focusing on ice absorption features. We investigate the abundance of $H_2O$ and $CO_2$ ices and other ice species (CO and XCN ices) along lines of sight towards Galactic H $\small{II}$ regions, massive YSOs, and infrared diffuse sources. Even among those different kinds of astronomical objects, the abundance ratio of $CO_2$ to $H_2O$ ices does not vary significantly, suggesting that the pathway to $CO_2$ ice formation driven by UV irradiation is not effective at least among the present targets.

SWIR Application for the Identification of High-Grade Limestones from the Upper Pungchon Formation (풍촌층 상부 층준의 고품위 석회석 동정을 위한 SWIR 적용)

  • Kim, Yong-Hwi;Kim, Gyoo Bo;Choi, Seon-Gyu;Kim, Chang Seong
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.335-347
    • /
    • 2016
  • The mineralogical and geochemical characteristics of diverse carbonate rocks can be investigated by using VNIRSWIR(visible near infrared-short wavelength infrared) spectroscopic analysis as a rapid, nondestructive, and inexpensive tool. Comparing whole rock analysis to VNIR-SWIR spectroscopic analysis, the analytical method was investigated to estimate CaO contents, mud impurity, and whiteness of carbonate rocks involved in high-grade limestones in the field. We classify typical carbonate rocks in the upper Pungchon Formation in high-grade limestone mine area such as the Gangweon, Chungmu and Baegun mine in the Jeongseon area. The results show that powdered specimen has much higher reflectance than cutted specimen between the same sample. Whiteness is highly correlated with reflectance(0.99) for powdered specimen. The absorption of mineral mixtures shifts in position as a result of the mass ratio of calcite and dolomite in the Chungmu mine by changing to 75:25, 50:50, and 25:75. The absorption peak position in carbonate mixtures is highly correlated with CaO contents(0.98~0.99). Based on color system, the carbonate rocks are grouped into (milky) white, light grey, light brown, grey, and dark grey. The absorption peak position shifts from 2340 nm to 2320 nm as CaO contents decrease from 55.86 wt.% to 29.71 wt.%. We confirmed that absorption peak position shifts depending on the amount of Ca, which is bonded to $CO{_3}^{-2}$, Mg, and Fe contents replacing Ca. This result suggests that CaO contents in carbonate rocks can be considered to quantitative analysis in the field by spectroscopic analysis.

Saturated Absorption Spectroscopy of 13C2H2 in the Near Infrared Region

  • Moon, H. S.;Lee, W. K.;Suh, H. S.
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • Using the external cavity spectroscopy method, we have observed the saturated absorption spectrum of the P(16) line of the v$_1$+v$_3$ band of $^{13}C$_2$H$_2$$. The frequency of a laser has been stabilized to the saturated absorption spectrum. The relative contrast of the saturation spectrum is about 7% with respect to the linear absorption and the linewidth is about 1.8 MHz. The frequency fluctuation of the stabilized LD is about $\pm$ 20 KHz for a sampling time of 100 ms.

The IGRINS Spectra of Late-Type Stars

  • Park, Sunkyung;Lee, Jeong-Eun;Kang, Wonseok;Lee, Sang-Gak;Chun, Moo-Young;Kim, Kang-Min;Yuk, In-Soo;Jeong, Ueejeong;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.58.2-58.2
    • /
    • 2015
  • We present a library of high spectral resolution (R ~ 40,000) and high signal-to-noise ratio (S/N ~ 200) near-infrared spectra of ~50 late-type stars. The spectra of late-type stars were obtained with Immersion GRating INfrared Spectrograph (IGRINS) covering the full H and K band. The stars are mainly from MK standard stars which have well-defined spectral types and luminosity classes and cover wide ranges of effective temperatures and surface gravities. The spectra are corrected for telluric absorption lines and absolutely flux calibrated using the Two Micron All Sky Survey (2MASS) photometry. In this work, we present the preliminary results of spectroscopic diagnostics for stellar physical parameters. Our ultimate goal is to provide a library of near-infrared spectra of standard stars, which covers all spectral types and luminosity classes, with a high spectral resolution and high signal-to-noise ratio.

  • PDF

Spectral Analysis for Non-Invasive Total Hemoglobin Measurement in the Region from 400 to 2500nm (총헤모글로빈 농도를 비침습적으로 측정하기 위한 400-2500nm 대역의 흡수 스펙트럼 분석)

  • Jeon, Kye-Jin;Kim, Yoen-Joo;Kim, Su-Jin;Kim, Hong-Sig;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.273-278
    • /
    • 2001
  • Absorption spectra of blood components have been measured for the purpose of predicting the total hemoglobin concentration. We obtained absorption spectra of major blood components from the visible to near-infrared of $400{\sim}2500nm$ region. In the near-infrared, water is the main absorbing constituent. The amount of water in the sample cell varies depending on the volume of solute concentration(water displacement). We acquired water-compensated spectra by considering the variation of water volume depending on the variation of analyze concentration. Those spectra show inherent absorption peaks of analyzes and linearity with respect to concentration. We selected wavelengths for non-invasive measurement of hemoglobin concentration considering the scattering effect of tissue and the interference of other blood components.

  • PDF

Predicting Organic Matter content in Korean Soils Using Regression rules on Visible-Near Infrared Diffuse Reflectance Spectra

  • Chun, Hyen-Chung;Hong, Suk-Young;Song, Kwan-Cheol;Kim, Yi-Hyun;Hyun, Byung-Keun;Minasny, Budiman
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.497-502
    • /
    • 2012
  • This study investigates the prediction of soil OM on Korean soils using the Visible-Near Infrared (Vis-NIR) spectroscopy. The ASD Field Spec Pro was used to acquire the reflectance of soil samples to visible to near-infrared radiation (350 to 2500 nm). A total of 503 soil samples from 61 Korean soil series were scanned using the instrument and OM was measured using the Walkley and Black method. For data analysis, the spectra were resampled from 500-2450 nm with 4 nm spacing and converted to the $1^{st}$ derivative of absorbance (log (1/R)). Partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil OM. Regression rules model estimates the target value by building conditional rules, and each rule contains a linear expression predicting OM from selected absorbance values. The regression rules model was shown to give a better prediction compared to PLSR. Although the prediction for Andisols had a larger error, soil order was not found to be useful in stratifying the prediction model. The stratification used by Cubist was mainly based on absorbance at wavelengths of 850 and 2320 nm, which corresponds to the organic absorption bands. These results showed that there could be more information on soil properties useful to classify or group OM data from Korean soils. In conclusion, this study shows it is possible to develop good prediction model of OM from Korean soils and provide data to reexamine the existing prediction models for more accurate prediction.

PROBING STAR FORMATION IN ULTRALUMINOUS INFRARED GALAXIES USING AKARI NEAR-INFRARED SPECTROSCOPY

  • Yano, Kenichi;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.189-191
    • /
    • 2017
  • We performed systematic observations of the H $\small{I}$ $Br{\alpha}$ line ($4.05{\mu}m$) in 51 nearby (z<0.3) ultraluminous infrared galaxies (ULIRGs), using AKARI near-infrared spectroscopy. The $Br{\alpha}$ line is predicted to be the brightest among the H ${\small{I}}$ recombination lines in ULIRGs with visual extinction higher than 15 mag. We detected the $Br{\alpha}$ line in 33 ULIRGs. In these galaxies, the relative contribution of starburst to the total infrared luminosity ($L_{IR}$) is estimated on the basis of the ratio of the $Br{\alpha}$ line luminosity ($L_{Br{\alpha}}$) to $L_{IR}$. The mean $L_{Br{\alpha}}/L_{IR}$ ratio in LINERs or Seyferts is significantly lower (~50%) than that in H $\small{II}$ galaxies. This result indicates that active galactic nuclei contribute significantly (~50%) to $L_{IR}$ in LINERs, as well as Seyferts. We also estimate the absolute contribution of starburst to $L_{IR}$ using the ratio of star formation rates (SFRs) derived from $L_{Br{\alpha}}$ ($SFR_{Br{\alpha}}$) and those needed to explain $L_{IR}$ ($SFR_{IR}$). The mean $SFR_{Br{\alpha}}/SFR_{IR}$ ratio is only 0.33 even in H $\small{II}$ galaxies, where starburst is supposed to dominate the luminosity. We attribute this apparently low $SFR_{Br{\alpha}}/SFR_{IR}$ ratio to the absorption of ionizing photons by dust within H $\small{II}$ regions.

Difference in the spatial distribution between $H_2O$ and $CO_2$ ices in M 82 found with AKARI

  • Yamagishi, Mitsuyoshi;Kaneda, Hidehiro;Oyabu, Shinki;Ishihara, Daisuke;Onaka, Takashi;Shimonishi, Takashi;Suzuki, Toyoaki;Minh, Young Chol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.34.1-34.1
    • /
    • 2013
  • Interstellar ices (e.g., $H_2O$, $CO_2$, and CO ices) are formed on the surface of dust grains in dense molecular clouds. In a near-infrared spectrum, we can observe deep absorption features particularly due to $H_2O$ ice at $3.05{\mu}m$ and $CO_2$ ice at $4.27{\mu}m$. These interstellar ices have many pieces of information on the interstellar environment. Among various ices, $CO_2$ ice is one of the most important ones as a probe of the interstellar environment. That is because $CO_2$ ice is a secondary product unlike $H_2O$ and CO ices which are primarily formed on dust grains. Past studies for $CO_2$ ice in nearby galaxies were performed only for the galactic center in a few galaxies. In order to utilize the information from $CO_2$ ice effectively, it is valuable to perform mapping observations of ices on a galactic scale. With AKARI, we obtain the spatially-resolved near-infrared ($2.5-5.0{\mu}m$) spectra for the central ~1 kpc region of the nearby starburst galaxy M 82. These spectra clearly show the absorption features due to interstellar $H_2O$ and $CO_2$ ices, and we created their column density maps. As a result, we find that the spatial distribution of $H_2O$ ice is significantly different from that of $CO_2$ ice; $H_2O$ ice is widely distributed, while $CO_2$ ice is concentrated near the galactic center. Our result for the first time reveals spatial variations in $CO_2/H_2O$ ice abundance ratio on a galactic scale, suggesting that the ice-forming interstellar environment changes within a galaxy. In this presentation, we discuss the cause of the variations in the ice abundance ratio.

  • PDF

Oxide Glasses for Holographic Data Storage

  • Poirier, Gael;Nalin, Marcelo;Ribeiro, Sidney J.L;Messaddeq, Younes
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.86-90
    • /
    • 2007
  • Novel photochromic oxide glasses are presented in this section. These glasses are based on phosphate formers containing both tungsten and antimony atoms. Exposure to visible continuous or pulsed laser beam results in an intense photochromic effect witch is shown to occur in the volume of the glass and results in a broad absorption band in the visible and near infrared. This effect was not identified to be related with a structural change and is assumed to be entirely electronic. A change in the absorption coefficient is observed in function of tungsten content, exposure time and increases with beam power. These glasses have been investigated regarding the possibility of holographic data storage using visible lasers sources. Changes in both refractive index and the absorption coefficient were measured using a holographic setup. The modulation of the optical constants is reversible by heat treatment.

  • PDF