• 제목/요약/키워드: Near-infrared Absorption

Search Result 175, Processing Time 0.02 seconds

Preparation and Characterization of Reduced Graphene Oxide with Carboxyl Groups-Gold Nanorod Nanocomposite with Improved Photothermal Effect (향상된 광열 효과를 갖는 카르복실화된 환원 그래핀옥사이드-골드나노막대 나노복합체의 제조 및 특성 분석)

  • Lee, Seunghwa;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.312-319
    • /
    • 2021
  • Photothermal therapy is a treatment that necrotizes selectively the abnormal cells, in particular cancer cells, which are more vulnerable to heat than normal cells, using the heat generated when irradiating light. In this study, we synthesized a reduced graphene oxide with carboxyl groups (CRGO)-gold nanorod (AuNR) nanocomposite for photothermal treatment. Graphene oxide (GO) was selectively reduced and exfoliated at high temperature to synthesize CRGO, and the length of AuNR was adjusted according to the amount of AgNO3, to synthesize AuNR with a strong absorption peak at 880 nm, as an ideal photothermal agent. It was determined through FT-IR, thermogravimetric and fluorescence analyses that more carboxyl groups were conjugated with CRGO over RGO. In addition, CRGO exhibited excellent stability in aqueous solutions compared to RGO due to the presence of carboxylic acid. The CRGO-AuNR nanocomposites fabricated by electrostatic interaction have an average size of ~317 nm with a narrow size distribution. It was confirmed that under radiation with a near-infrared 880 nm laser which has an excellent tissue transmittance, the photothermal effect of CRGO-AuNR nanocomposites was greater than that of AuNR due to the synergistic effect of the two photothermal agents, CRGO and AuNR. Furthermore, the results of cancer cell toxicity by photothermal effect revealed that CRGO-AuNR nanocomposites showed superb cytotoxic properties. Therefore, the CRGO-AuNR nanocomposites are expected to be applied to the field of anticancer photothermal therapy based on their stable dispersibility and improved photothermal effect.

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

Synthesis and characterization of highly luminescent upconversion nanoparticles (공동침전법 기반 고발광 상향변환 나노입자의 합성법 및 특성 분석)

  • Sung Woo Jang;Won Bin Im
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.5
    • /
    • pp.187-193
    • /
    • 2024
  • Lanthanide-doped upconversion nanoparticles (UCNPs) are capable of converting low energy near-infrared photons into relatively high energy visible and ultraviolet photon. Their unique optical properties have a broad range of applications such as volumetric display, security labelling and deep-tissue imaging. Herein, the optically active hexagonal phased NaYF4:Nd3+, Yb3+@NaYF4:Yb3+, Tm3+ core-shell nanoparticles were synthesized via facile co-precipitation method which can show upconversion luminescence upon 745 nm laser excitation. This is accomplished by taking advantages of the large absorption cross-section of Nd3+ ions between 720 to 760 nm plus efficient spatial energy transfer and migration which starts from Nd3+ ions to Yb3+ ions and Tm3+ ions. Also, the formation of inert NaYF4 shell significantly enhance the upconversion efficiency. The core-shell-shell UCNPs were characterized with X-ray diffraction (XRD) patterns, scanning electron microscope (SEM), transmission electron microscope (TEM), absorbance, and photoluminescence spectra.

정지궤도 통신해양기상위성의 기상분야 요구사항에 관하여

  • Ahn, Myung-Hwan;Kim, Kum-Lan
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.20-42
    • /
    • 2002
  • Based on the "Mid to Long Term Plan for Space Development", a project to launch COMeS (Communication, Oceanography, and Meteorological Satellite) into the geostationary orbit is undergoing. Accordingly, KMA (Korea Meteorological Administration) has defined the meteorological missions and prepared the user requirements to fulfill the missions. To make a realistic user requirements, we prepared a first draft based on the ideal meteorological products derivable from a geostationary platform and sent the RFI (request for information) to the sensor manufacturers. Based on the responses to the RFI and other considerations, we revised the user requirement to be a realistic plan for the 2008 launch of the satellite. This manuscript introduces the revised user requirements briefly. The major mission defined in the revised user requirement is the augmentation of the detection and prediction ability of the severe weather phenomena, especially around the Korean Peninsula. The required payload is an enhanced Imager, which includes the major observation channels of the current geostationary sounder. To derive the required meteorological products from the Imager, at least 12 channels are required with the optimum of 16 channels. The minimum 12 channels are 6 wavelength bands used for current geostationary satellite, and additional channels in two visible bands, a near infrared band, two water vapor bands and one ozone absorption band. From these enhanced channel observation, we are going to derive and utilize the information of water vapor, stability index, wind field, and analysis of special weather phenomena such as the yellow sand event in addition to the standard derived products from the current geostationary Imager data. For a better temporal coverage, the Imager is required to acquire the full disk data within 15 minutes and to have the rapid scan mode for the limited area coverage. The required thresholds of spatial resolutions are 1 km and 2 km for visible and infrared channels, respectively, while the target resolutions are 0.5 km and 1 km.

An IRS Study on the Adsorption of Carbonmonoxide on Silica Supported Ni-Cu Alloys (실리카 지지 니켈-구리 합금에서 일산화탄소의 흡착에 관한 IRS 연구)

  • Ahn, Jeong-Soo;Yoon, Koo-Sik;Park, Sang-Youn;Park, Sung-Kyun
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.233-243
    • /
    • 2009
  • We have investigated the infrared spectra for CO adsorbed on silica supported nickel(Ni-Si$O_2$), silica supported copper(Cu-Si$O_2$), silica supported nickel-copper alloys(Ni/Cu-Si$O_2$) of several compositions with varying CO pressures(0.2 $torr{\sim}$50 torr) at room temperature and on pumping to vacumn at room temperature within the frequency range of 1500 $cm^{-1}{\sim}2500\;cm^{-1}$. Four bands(2059.6 $cm^{-1},\;{\sim}$2036.5 $cm^{-1},\;{\sim}$ 1868.7 $cm^{-1},\;{\sim}$ 1697.1 $cm^{-1}$) were observed for Ni-Si$O_2$, two bands($\sim$2115.5 $cm^{-1},\;{\sim}$1743.0 $cm^{-1}$) were observed for Cu-Si$O_2$ and five bands(${\sim}2123.2\;cm^{-1}$, 2059.6 $cm^{-1},\;{\sim}$2036.4 $cm^{-1},\;{\sim}$1899.5 $cm^{-1},\;{\sim}$1697.1 $cm^{-1}$) were observed for Ni/Cu-Si$O_2$. These absorption bands correspond with those of the previous reports approximately. The bands below 1800 $cm^{-1}$ were only observed with Ni metal or Ni/Cu alloy crystal plane containing step at room temperature and the ${\sim}1697.1\;cm^{-1}$ bands observed with Ni-Si$O_2$ and Ni/Cu-Si$O_2$ may be ascribed to CO molecule adsorbed on the adsorption sites near step. The bands below 2000 $cm^{-1}$ were rarely observed with Cu metal crystal plane at room temperature and the 1743.0 $cm^{-1}$ bands may be ascribed to CO molecule adsorbed on the adsorption sites near step. The band shifts of adsorbed CO with varing Cu contents from 0 to 0.5 mole fraction at the same CO pressure or at the same pumping time to vacumn were below 21 $cm^{-1}$. and comparatively small than those with other ⅠB metal addition. It may means ligand effect of Cu d electron is small.