• Title/Summary/Keyword: Near-field sound pressure

Search Result 49, Processing Time 0.02 seconds

Prediction of acoustic field induced by a tidal turbine under straight or oblique inflow via a BEM/FW-H approach

  • Seungnam Kim;Spyros A. Kinnas
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.147-172
    • /
    • 2023
  • This study investigates the influence of loading and inflow conditions on tidal turbine performance from a hydrodynamic and hydroacoustic point of view. A boundary element method is utilized for the former to investigate turbine performance at various loading conditions under zero/non-zero yaw inflow. The boundary element method is selected as it has been selected, tested, and validated to be computationally efficient and accurate for marine hydrodynamic problems. Once the hydrodynamic solutions are obtained, such as the time-dependent surface pressures and periodic motion of the turbine blade, they are taken as the known noise sources for the subsequence hydroacoustic analysis based on the Ffowcs Williams-Hawkings formulation given in a form proposed by Farassat. This formulation is coupled with the boundary element method to fully consider the three-dimensional shape of the turbine and the speed of sound in the acoustic analysis. For validations, a model turbine is taken from a reference paper, and the comparison between numerical predictions and experimental data reveals satisfactory agreement in hydrodynamic performance. Importantly, this study shows that the noise patterns and sound pressure levels at both the near- and far-field are affected by different loading conditions and sensitive to the inclination imposed in the incoming flow.

An Experimental Study on the Propagation Characteristics of the Impulse Noise from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성에 관한 실험적 연구)

  • Heo, Sung-Wook;Lee, Myeong-Ho;Lee, Dong-Hoon;Hwang, Yoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube facility. The pressure amplitudes and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are measured and analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the experiments. the impulse waves are visualized by a Schlieren optical system for the purpose of understanding their propagation characteristics. The results obtained show that for the near sound field the impulse noise strongly propagates toward the pipe axis, but for the far sound field the impulse noise uniformly propagates toward the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. For this non-directivity in the far sound field, it is shown that the perforated pipe has little performance to suppress the impulse noise.

Characteristic of room acoustical parameters with source-receiver distance on platform in subway stations (지하철 승강장의 음원-수음점 거리에 따른 실내음향 평가지수 특성)

  • Kim, Suhong;Song, Eunsung;Kim, Jeonghoon;Lee, Songmi;Ryu, Jongkwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.615-625
    • /
    • 2021
  • Prior to proposing appropriate standard for subway station platform, this study conducted field measurements to examine characteristics of room acoustics on platform of two subway stations. As a result of analyzing the longitudinal length of the platform, Sound Pressure Level (SPL) decreased (maximum difference : 14 dB), Reverberation Time (RT) tended to increase (maximum difference of 0.8 s ~ 1.5 s), and C50 and D50 were decreased (maximum difference: 5.9 dB ~ 9.1 dB and 31.8 % ~ 37.6 %, respectively) as measurement positions moved away from the sound source. The Interaural Cross-correlation Coefficient (IACC) did not show clear tendency, but it was lower than 0.3 in entire points. It is judged that the subway platform has non-uniform sound field characteristics due to various combinations of direct and reflective sound even though it is finished with a strong reflective material.This indicates that the room acoustic characteristics of the near and far sound field are clearly expressed depending on the source-receiver distances in the subway platform having a long flat shape with a low height compared to the length.Therefore, detailed architectural and electric acoustic design based on the characteristics of each location of speaker and sound receiver in the platform is required for an acoustic design with clear sound information at all positions of the platform.

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube (슬롯관형 초음속 배기노즐의 공력소음에 관한 연구)

  • Lee, Dong-Hoon;Seto, Kunisato
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

Parametric Array Signal Generating System using Transducer Array (트랜스듀서 배열을 이용한 파라메트릭 배열 신호 생성 시스템)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho;Paeng, Dong-Guk;Choe, Mi Heung;Kim, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • We present a parametric array signal generating system using $3{\times}16$ transducer array which is composed of multi-resonant frequency transducers of 20kHz and 32.5kHz. To drive transducer array, sixteen channel amplifier using LM1875 chips is designed and implemented, and the PXI system based on the LabView 8.6 for arbitrary signal generation and analysis is used. Using the proposed system, we measure sound pressure level and beam pattern of difference frequency and verify the nonlinear effect of difference frequency. The theoretical absorption range and the Rayleigh distance are 15.51m and 1.933m, respectively and we verify that sound pressure of difference frequency is accumulated and increased at the near-field shorter than the Rayleigh distance. We verify that the beam pattern of the measured difference frequency and the beam pattern obtained by the superposition of two primary frequencies are similar, and high directional parametric signal was generated.

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method (격자볼츠만기법을 이용한 선박 파이프내 유동소음해석)

  • Beom-Jin Joe;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.512-519
    • /
    • 2023
  • Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.

Control of vortex shedding from circular cylinder by acoustic excitation (원통내부의 음향여기에 의한 와류유출제어)

  • Kim, Gyeong-Cheon;Bu, Jeong-Suk;Lee, Sang-Uk;Gu, Myeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1649-1660
    • /
    • 1996
  • The flow around a circular cylinder was controlled by an acoustic excitation issued from a thin slit along the cylinder axis. The static pressure distributions around the cylinder wall and flow characteristics in the near wake have been measured. Experiments were performed under three cases of Reynolds number, 7.8 * 10$\^$4/, 2.3 * 10$\^$5/ and 3.8 * 10$\^$5/. The effects of excitation frequency, sound pressure level and the location of the slit were examined. Data indicate that the excitation frequency and the slit location are the key parameters for controlling the separated flow. At Re$\_$d/, = 7.8 * 10$\^$4/, the drag is reduced and the lift is generated to upward direction, however, at Re$\_$d/, =2.3 * 10$\^$5/ and 3.8 * 10$\_$5/, the drag is increased and lift is generated to downward direction inversely. It is thought that the lift switching phenomenon is due to the different separation point of upper surface and lower surface on circular cylinder with respect to the flow regime which depends on the Reynolds number. Vortex shedding frequencies are different at upper side and lower side. Time-averaged velocity field shows that mean velocity vector and the points of maximum intensities are inclined to downward direction at Re$\_$d/ = 7.8 * 10$\^$4/, but are inclined to upward direction at Re$\_$d/ = 2.3 * 10$\^$5/.

Development of high performance and low noise compact centrifugal fan for cooling automotive seats (자동차 시트 쿨링용 고성능·저소음 컴팩트 원심팬 개발)

  • Kim, Jaehyun;Ryu, Seo-Yoon;Cheong, Cheolung;Jang, Donghyeok;An, Mingi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.396-403
    • /
    • 2018
  • In this paper, a high-performance and low-noise centrifugal fan is developed for cooling automotive seats which provide a driver with pleasant driving environment. First, the flow characteristics of the existing fan unit was analyzed using a fan performance tester and CFD (Computational Fluid Dynamics) simulations. The analysis of the predicted flow field indicated vortex flow near the tip of fan hub and stagnation flow on the top of fan hub. Two design points are devised to reduce the vortex flow and the stagnation flow observed in the existing fan unit. First, the cut-off clearance which is the minimum distance between the fan blade and the fan housing is increased to reduce the vortex strength and, as a result, to reduce the overall sound pressure level. Second, the hub shape is more modified to eliminate the stagnation flow. The validity of proposed design is confirmed through the numerical analysis. Finally, a prototype is manufactured with a basis on the numerical analysis result and its improved flow and noise performances are confirmed through the P-Q curves measured by using the Fan Tester and the SPL (Sound Pressure Level) levels measured in the anechoic chamber.

Numerical and experimental analysis of aerodynamics and aeroacoustics of high-speed train using compressible Large Eddy Simulation (압축성 대와류모사를 이용한 고속열차의 공력 및 공력소음의 수치적/실험적 분석)

  • Kwongi Lee;Cheolung Cheong;Jaehwan Kim;Minseung Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2024
  • Due to technological advances, the cruising speed of high-speed trains is increasing, and aerodynamic noise generated from the flow outside the train has been an important consideration in the design stage. To accurately predict the flow-induced noise, high-resolution generation of sound sources in the near field and low-dissipation of sound propagation in the far field are required. This should be accompanied by a numerical grid and time resolution that can properly consider both temporal and spatial scales for each component of the real high-speed train. To overcome these challenges, this research simultaneously calculates the external flow and acoustic fields of five high-speed train cars of real-scale and at operational running speeds using a threedimensional unsteady Large Eddy Simulation technique. To verify the numerical analysis, the measurements of the wall pressure fluctuation and numerical results are compared. The Ffowcs Williams and Hawking equation is used to predict the acoustic power radiated from the high-speed train. This research is expected to contribute to noise reduction based on the analysis of the aerodynamic noise generation mechanism of high-speed trains.