• Title/Summary/Keyword: Near-edge X-ray absorption fine structure

Search Result 34, Processing Time 0.031 seconds

Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil (비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • X-ray absorption fine structure (XAFS) analysis using X-ray absorption spectroscopy is being applied as a state-of-the-art method in a wide range of disciplines. This review article summarizes the overall procedure of XAFS analysis from the preparation of soil samples to the analysis of data in X-ray absorption near edge structure (XANES) region and extended Xray absorption fine structure (EXAFS) region. The previous studies on application of XANES and EXAFS techniques in environmental soil science field are discussed and classified them according to metal(loid)s (As, Cd, Cu, Ni, Pb, and Zn). A significant number of previous studies of XAFS application in the environmental soil science field have focused on the identification of Pb chemical species in soil. Moreover, XANES and EXAFS techniques have been widely used to investigate the contamination source via identification of metal species. Similarly, these techniques were applied to identify the mechanisms of metal stabilization in soil after application of various amendments, phytoremediation, etc.

In situ Structural Investigation of Iron Phthalocyanine Monolayer Adsorbed on Electrode Surface by X-ray Absorption Fine Structure

  • Kim, Seong Hyeon;Toshiaki Ohta;Gang, Gwang Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.588-594
    • /
    • 2000
  • Structural changes of an iron phthalocyanine (FePC) monolayer induced by adsorption and externally applied potential on high area carbon surface have been investigated in situ by iron K-edge X-ray absorption fine structure (XAFS) in 0.5 M $H_2S0_4.$ Fine structures shown in the X-ray absorption near edge structure (XANES) for microcrystalline FePC decreased upon adsorption and further diminished under electrochemical conditions. Fe(II)PC(-2) showed a 1s ${\rightarrow}$ 4p transition as poorly resolved shoulder to the main absorption edge rather than a distinct peak and a weak 1s ${\rightarrow}$ 3d transition. The absorption edge position measured at half maximum was shifted from 7121.8 eV for Fe(lI)PC(-2) to 7124.8 eV for $[Fe(III)PC(-2)]^+$ as well as the 1s ${\rightarrow}$ 3d pre-edge peak being slightly enhanced. However, essentially no absorption edge shift was observed by the 1-electron reduction of Fe(Il)PC(-2), indicating that the species formed is $[Fe(II)PC(-3)]^-$. Structural parameters were obtained by analyzing extended X-ray absorption fine structure (EXAFS) oscillations with theoretical phases and amplitudes calculated from FEFF 6.01 using multiple-scattering theory. When applied to the powder FePC, the average iron-to-phthalocyanine nitrogen distance, d(Fe-$N_p$) and the coordination number were found to be 1.933 $\AA$ and 3.2, respectively, and these values are the same, within experimental error, as those reported ( $1.927\AA$ and 4). Virtually no structural changes were found upon adsorption except for the increased Debye-Wailer factor of $0.005\AA^2$ from $0.003\AA^2.$ Oxidation of Fe(II)PC(-2) to $[Fe(III)PC(-2)]^+$ yielded an increased d(Fe-Np) (1 $.98\AA)$ and Debye-Wailer factor $(0.005\AA^2).$ The formation of $[Fe(II)PC(-3)]^-$, however, produced a shorter d(Fe-$N_p$) of $1.91\AA$ the same as that of crystalline FePC within experimental error, and about the same DebyeWaller $factor(0.006\AA^2)$.

Local Structure Refinement of the $BaFe_{1-x}Sn_xO_{3-y}$ System with Fe K-Edge X-Ray Absorption (XANES/EXAFS) Spectroscopy

  • 김민규;곽기섭;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.743-749
    • /
    • 1997
  • Local structure refinement of the BaFe1-xSnxO3-y system (x=0.00-0.50) has been carried out with Fe K-edge x-ray absorpion spectroscopic studies. It is found out that the Fe ions are placed in two different symmetric sites such as tetrahedral and octahedral sites in the compounds by comparison with Fe K-edge x-ray absorption near edge structure (XANES) spectrum of the γ-Fe2O3 compound as a reference. Small absorption peaks of dipole-forbiden transitions appear at a pre-edge region of 7111 eV due to the existence of Fe ions in the tetrahedral and octahedral sites. The peak intensity decreases with the substitution amount of Sn ion. Three different absorption peaks of 1s→4p dipole-allowed transition appear on the energy region between 7123 and 7131 eV. The peaks correspond to 1s→4p main transition of Fe ions in tetrahedral and octahedral sites and 1s→4p transition followed by the shakedown process of ligand to metal charge transfer. The bond distances between Fe ions in the tetrahedral site and nearest neighboring oxygen atom (Fe-4O), and those in octahedral site (Fe-6O) are determined with the extended x-ray absorption fine structure (EXAFS) analysis. Two different interatomic distances increase with the substitution amount of Sn ion and also the bond lengths of Fe-4O are shorter than those of Fe-6O in all compounds.

Ring Formation of Furan on Epitaxial Graphene (단결정 그라핀 위에서의 퓨란의 고리모양 형성)

  • Kim, Ki-Jeong;Yang, Se-Na;Park, Young-Chan;Lee, Han-Koo;Kim, Bong-Soo;Lee, Han-Gil
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.252-257
    • /
    • 2011
  • The ring formation and electronic properties of furan adsorbed on graphene layers grown on 6H-SiC (0001) has been investigated using atomic force microscopy (AFM), near edge X-ray absorption fine structure (NEXAFS) spectra for the C K-edge, and core level photoemission spectroscopy (CLPES). Moreover, we observed that furan molecules adsorbed on graphene could be used for chemical functionalization via the lone pair electrons of the oxygen group, allowing chemical doping. We also found that furan spontaneously form rings with one of three different bonding configurations and the electronic properties of the ring formed by furan on graphene can be described using by AFM, NEXAFS and CLPES, respectively.

X-ray Absorption Spectra Analysis for the Investigation of the Retardation Mechanism of Iodine Migration by the Silver Ion Added to Bentonite (벤토나이트에 첨가한 은 이온에 의한 아이오딘 이동 저지 메커니즘 규명을 위한 X-선 흡수 스펙트라 분석)

  • Kim, Seung-Soo;Kim, Min-Gue;Baik, Min-Hoon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • Most of iodine was captured by the block when NaI solution flowed through a bentonite block sorbed silver to retard the migration of iodine released from high-level radioactive wastes. In order to understand in detail the mechanism for the retardation of the iodine by the silver ion, X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectra of the silver sorbed bentonite before and after the contact with iodide were compared with those of AgO, $Ag_2O$ and AgI as references. This examination suggests that the silver ion sorbed on the bentonite is desorbed, and then it retards the migration of iodine by forming the cluster of AgI precipitate.

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Electronic structure studies of Co-substituted FINEMET alloys by x-ray absorption spectroscopy

  • Chae, K.H.;Gautam, S.;Song, J.H.;Kane, S.N.;Varga, L.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.377-377
    • /
    • 2010
  • FINEMET type nanocrystalline materials synthesized by controlled crystallization of amorphous ribbons[1] exhibit excellent soft magnetic properties making them attractive for technological applications. Present work reports the electronic structure studies of Co-substituted FINEMET to get information on the effect of successive Co substitution on local environment around Fe and Co atom by using near edge x-ray absorption fine structure (NEXAFS) and x-ray magnetic circular dichroism (XMCD) measurements. NEXAFS spectroscopy and XMCD measurements have been carried out at Fe $L_{3,2}$ and Co $L_{3,2}$-edges to investigate the chemical states and electronic structure of FINEMET [$(Fe_{100-x}Co_x)_{78}Si_9Nb_3Cu_1Ba$](0$L_{3,2}$-edge reveal that Fe is in 2+ state and in tetrahedral symmetry with other elements. The magnetic properties exhibiting soft magnetic behavior[2] are discussed on the basis of the electronic structure studied through XMCD.

  • PDF

Distribution of Co Ions in Ferromagnetic Zn (1-x) Co (x)O Films

  • Park, Chang-In;Seo, Su-Yeong;Kim, Jeong-Ran;Han, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.166-166
    • /
    • 2012
  • We examined the distribution of Co ions of ferromagnetic n-type Zn(1-x)Co(x)O semiconducting films with the Co concentrations of 0.03~0.07 using x-ray absorption fine structure (XAFS) measurements at the Co and Zn K edges. Extended XAFS (EXAFS) revealed that Co ions mainly occupied the zinc sites of the films. X-ray absorption near edge structure (XANES) spectra demonstrated that the pre-edge peak of the Co K edge was substantially affected by the second neighboring Co ions at the zinc sites due to hybridizing of the Co 4p conduction electrons with the Co 3d bounded electrons. From XANES and EXAFS analysis using ab initio calculations, we found that Co ions uniformly occupied the zinc sites of the Zn (0.93) Co (0.07)O film, whereas the Co ions of the Zn (0.97) Co (0.03)O and Zn (0.95) Co (0.05)O films were substituted at localized zinc sites. The ferromagnetic properties of the Zn (0.93) Co(0.07)O film could be induced by direct interaction between the magnetic dipoles of the Co ions with a mean distance of 4.3 A or by Co 4p electron mediation.

  • PDF