• 제목/요약/키워드: Near-Source region

검색결과 146건 처리시간 0.026초

근거리 지진관측자료의 S파를 이용한 지진규모 평가 연구 (A Study on Estimating Earthquake Magnitudes Based on the Observed S-Wave Seismograms at the Near-Source Region)

  • 연관희;최신규;이강렬
    • 한국지진공학회논문집
    • /
    • 제28권3호
    • /
    • pp.121-128
    • /
    • 2024
  • There are growing concerns that the recently implemented Earthquake Early Warning service is overestimating the rapidly provided earthquake magnitudes (M). As a result, the predicted damages unnecessarily activate earthquake protection systems for critical facilities and lifeline infrastructures that are far away. This study is conducted to improve the estimation accuracy of M by incorporating the observed S-wave seismograms in the near source region after removing the site effects of the seismograms in real time by filtering in the time domain. The ensemble of horizontal S-wave spectra from at least five seismograms without site effects is calculated and normalized to a hypocentric target distance (21.54 km) by using the distance attenuation model of Q(f)=348f0.52 and a cross-over distance of 50 km. The natural logarithmic mean of the S-wave ensemble spectra is then fitted to Brune's source spectrum to obtain the best estimates for M and stress drop (SD) with the fitting weight of 1/standard deviation. The proposed methodology was tested on the 18 recent inland earthquakes in South Korea, and the condition of at least five records for the near-source region is sufficiently fulfilled at an epicentral distance of 30 km. The natural logarithmic standard deviation of the observed S-wave spectra of the ensemble was calculated to be 0.53 using records near the source for 1~10 Hz, compared to 0.42 using whole records. The result shows that the root-mean-square error of M and ln(SD) is approximately 0.17 and 0.6, respectively. This accuracy can provide a confidence interval of 0.4~2.3 of Peak Ground Acceleration values in the distant range.

3 성분 혼합연료의 분무특성 해명 (Analysis of Spray Characteristic for 3-Component Mixed Fuel)

  • 명광재
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.589-595
    • /
    • 2009
  • The instability wave formed near nozzle region grows to vortex with large scale in downstream region of spray. It plays an important role in the fuel-air mixing, combustion process and engine exhaust emissions in direct injection diesel engine. The objective of this study is to analyze effect of variant parameters (injection pressure, ambient gas density, etc.) and fuel properties on spray instability near nozzle region. Spray structure near nozzle region was investigated using a magnification photograph. A pulsed Nd-YAG laser was used as a light source, and image was taken by CCD camera. The following conclusions are drawn from this experimental analysis. In low ambient density, the effect of fuel properties on spray instability near nozzle region is dominant. In high ambient density, the effect of ambient gas on spray instability near nozzle region is dominant. High jet velocity has strong influence on spray instability.

Fabrication of Microcantilever Ultrasound Sensor and Its Application to the Scanning Laser Source Technique

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.459-466
    • /
    • 2005
  • The scanning laser source (SLS) technique has been proposed recently as an effective way to investigate small surface-breaking defects, By monitoring the amplitude and frequency changes of the ultrasound generated as the SLS scans over a defect, the SLS technique has provided enhanced signal-to-noise performance compared to the traditional pitch-catch or pulse-echo ultrasonic methods, An extension of the SLS approach to map defects in microdevices is proposed by bringing both the generator and the receiver to the near-field scattering region of the defects, To facilitate near-field ultrasound measurement, silicon microcantilever probes are fabricated using microfabrication technique and their acoustical characteristics are investigated, Then, both the laser-generated ultrasonic source and the microcantilever probe are used to monitor near-field scattering by a surface-breaking defect.

경계배치법에 의한 근거리 음장 해석 기법 연구; 가중치를 갖는 선배열 음원의 최적 측정점 개수의 결정 (Study on Sound Field Analysis in Near-Field using Boundary Collocation Method; Decision of Optimum Points of Measurement for Line Array Sound Source with Weighting Value)

  • 김원호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1752-1761
    • /
    • 2000
  • This paper describes the far-field estimation using the near-field measurement data. Measurement in far-field region gives us the acoustical characteristics of the source but in general measurement is made in near-field such as acoustic water tank or anechoic chamber, so far-field acoustical characteristics of the source should be predicted from near-field data. In this case, the number of measurement points in the near field which relates to the accuracy of the predicted field and the amount of data processing, should be optimized. Existing papers say that measurement points is proportional to kL and depends on geometry and directivity of the source. But they do not give us any definite criterion for the required number of measurement points. Boundary Collocation Method which is one of the far-field prediction methods, is analyzed based on Helmholtz integral equation and Green function and it has been found that the number of measurement points is optimized as 0.54kL which is about one half of the existing results.

  • PDF

국내 인프라사운드 전파특성 연구 (Infrasound Wave Propagation Characteristics in Korea)

  • 제일영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.63-69
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) cooperating with Southern Methodist University(SMU) has been operating seismo-acoustic array in Chul-Won area to discriminate man-made explosions from natural earthquakes since at the end of July 1999. In order to characterize propagation parameters of detected seismo-acoustic signal and to associate these signals as a blast event accompanying seismic and acoustic signals simultaneously it is necessary to understand infrasound wave propagation in the atmosphere. Two comparable Effective Sound Velocity Structures(ESVS) in atmosphere were constructed by using empirical model (MSISE90 and HWM93) and by aerological observation data of Korea Meteorological Administration (KMA) at O-San area. Infrasound propagation path computed by empirical model resulted in rare arival of refracted waves on ground less than 200km from source region. On the other hand Propagation paths by KMA more realistic data had various arrivals at near source region and well agreement with analyzed seismo-acoustic signals from Chul-Won data. And infrasound propagation in specific direction was very influenced by horizontal wind component in that direction. Linear travel time curve drawn up by 9 days data of the KMA in autumn season showed 335.6m/s apparent sound velocity in near source region. The propagation characteristics will be used to associate seismo-acoustic signals and to calculate propagation parameters of infrasound wave front.

  • PDF

근접음장 연속법과 등가 음원법을 이용한 음향홀로그래피 연구 (Study of Acoustic Holography using Equivalent Source Method with Continuation of Acoustic Near-field)

  • 김성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.643-648
    • /
    • 2011
  • This paper deals with the ESM(equivalent source method) with the continuation of acoustic near-field for NAH(near-field acoustic holography) to overcome the finite measurement aperture effect and reconstruct the normal velocity on an arbitrarily shaped structure surface. The continuation method is an extension of the measured sound field into a region outside and is based on the Green's function relating acoustic quantities on the two conformal surfaces. This algorithm is not limited to planar surfaces and can be applied to arbitrarily shaped surfaces. The ESM is an alternative approach of BEM-based NAH for the reconstruction on a general structure. In ESM the acoustic field is represented by a set of point sources located over a surface that is close to the structure surface. The simulation results of this study shows that the reconstruction error of particle velocity on the source surface is 11% and 16% for planar and cylindrical sources separately.

  • PDF

WATER MASERS FROM THE PROTOSTELLAR DISK AND OUTFLOW IN THE NGC 1333 IRAS 4 REGION

  • Park, Geum-Sook;Choi, Min-Ho
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.123-125
    • /
    • 2007
  • NGC 1333 is a nearby star forming region, and IRAS 4A and IRAS 4BI are low-mass Class 0 protostars. IRAS 4A is a protobinary system. The NGC 1333 IRAS 4 region was observed in the 22 GHz water maser with a high resolution (0.08") using the Very Large Array. Two groups of masers were detected: one near A2 and the other near BI. Most of the masers associated with A2 are located very close (< 100 AU) to the radio continuum source. They may be associated with the circumstellar disk. Since no maser was detected near AI, the A2 disk is relatively more active than the Al disk. Most of the masers in the BI region are distributed along a straight line, and they are probably related with the outflow. As in many other water maser sources, the IRAS 4 water masers seem to trace selectively either the disk or the outflow. Considering the outflow lifetimes, the disk-outflow dichotomy is probably unrelated with the evolutionary stage of protostars. A possible explanation may be that both the outflow-maser and the disk-maser are rare phenomena and that detecting both kinds of maser around a single protostar may be even rarer.

근접장 음향 홀로그래피에 의한 수중 음원의 위치 추정 (Positional Estimation of Underwater Sound Source Using Nearfield Acoustic Holography)

  • 윤종락;김원호
    • 한국음향학회지
    • /
    • 제24권3호
    • /
    • pp.166-170
    • /
    • 2005
  • 본 논문은 근접장 음향 홀로그래피를 이용한 수중 음원의 위치를 추정하는 기술에 대한 것이다. 수중 소음원의 식별에 적용 가능함을 실험으로 검증하고 그 결과를 기술하였다. 실험에 사용된 음원은 2개의 구형 센서로 구성되고 음원의 근거리 음압은 음원과 근접된 위치에 설정된 홀로그램 평면에서 측정된다. 측정된 음압에 대한 상호전력 스펙트럼으로부터 홀로그램 평면에서의 복소음압을 구하고 이를 공간 변환하여 음원 영역에서의 음장분포를 구하였다. 음원 영역에서의 음장분포 결과는 음원의 위치와 발생된 음원준위의 크기를 가시적으로 보여주며, 실험 결과는 음원의 위치와 음원준위의 상대적인 크기를 정확하게 추정하고 있어 근접장 음향 홀로그래피를 이용하여 수중 소음원의 위치 추정과 개별 소음원의 기여도 분석이 가능함을 확인하였다.

A New Grid-Based Monte Carlo Code for Raman Scattered He II: Preliminary Results

  • Chang, Seok-Jun;Choi, Bo-Eun;Lee, Hee-Won
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.85.2-85.2
    • /
    • 2019
  • We developed a new grid-based Monte Carlo code to trace far UV He II line photons that are incident on a thick H I region and subsequently transferred through Rayleigh and Raman scattering with atomic hydrogen. In particular, we consider a neutral region that is moving away from the He II emission source which is either monochromatic or is described by a Gaussian profile. The resultant Raman scattered He II line profiles from a monochromatic source are characterized by a double peaked core part with an extended Raman red tail that is attributed to multiple re-entry events. Complicated behaviors are observed in the case of a Gaussian He II source including the formation of a secondary red peak near the Balmer center dependent on the H I column density. A preliminary application of our results to the CFHT data of the planetary nebula IC 5117 is presented.

  • PDF

Stability Analysis of an Accelerator-Driven Fluid-Fueled Subcritical Reactor System

  • Kim, Do-Sam;Cho, Nam-Zin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.90-95
    • /
    • 1997
  • In this work, linear dynamics of a circulating fluid-fueled subcritical reactor system with temperature feedback and external neutron source was modeled and examined. In a circulating fluid-fuel system, the stable region is slightly moved by a circulation fluid effect. The effects of subcriticality and temperature feedback coefficient on the reactor stability were tested by calculating frequency response of neutron density originated from reactivity perturbation or external source oscillation of system. The amplitude transfer function has a different shape near subcritical region due to the exponential term in the transfer function. The results of the study show that at a slightly subcritical region, low frequency oscillation in accelerator current or reactivity can be amplified depending on the temperature feedback. However, as the subcriticality increases, the oscillation becomes negligible regardless of the magnitude of the temperature feedback coefficient.

  • PDF