• Title/Summary/Keyword: Near-Infrared Laser

Search Result 88, Processing Time 0.022 seconds

Femtosecond Micromachining Applications for Optical Devices

  • Sohn, Ik-Bu;Lee, Man-Seop;Woo, Jeong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • This paper investigates applications of femtosecond lasers for the micromachining of transparent materials and fabrication of optical devices. We show commercial micromachining examples of transparent materials which have been fabricated for various applications. Near infrared femtosecond laser processing is an attractive method to fabricate three-dimensional optical waveguides into various transparent materials. Focused femtosecond laser pulses induce a permanent refractive-index change only near the focal point. We also demonstrate a Y coupler with the splitting ratio of 1:1 written by femtosecond laser pulses into a fused silica glass. The minimum propagation loss of 0.8 ㏈/㎝ awl the refractive-index change of 0.006-0.01 at the wavelength of 1550 ㎚ were achieved by optimization of the laser fluence.

Decade Long Survey of Low-level Laser Therapy/Photobiomodulation (LLLT/PBM) Therapy for Oral Mucositis Treatment

  • Ryu, Hyun Seok;Abueva, Celine;Chung, Phil-Sang;Woo, Seung Hoon
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2021
  • Low-level laser therapy or photobiomodulation (LLLT/PBM) therapy has been widely applied to enhance and accelerate the recovery of oral mucositis. This study investigates the documented effect of LLLT on oral mucositis caused by chemotherapy. This review appraises 6 animal studies and 12 clinical studies published in the Pubmed database during the past 10 years, related to the application of LLLT for the treatment of mucositis. Despite varied parameters and diverse conditions, the assessed articles indicate that application of LLLT on oral mucositis using near-infrared wavelengths is prophylactic, reduces pain, and enables a rapid recovery. Various combined treatments were also identified among the published papers, which further establishes the efficacy of LLLT as a viable treatment.

Characterization of Porcine Tissue Perforation Using High-Power Near-Infrared Laser at 808-nm Wavelength (808 nm 파장의 고출력 근적외선 레이저 조사 시 돼지 조직의 천공 특성 연구)

  • Kim, Seongjun;Cho, Jiyong;Choi, Jaesoon;Lee, Don Haeng;Kim, Jung Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.807-814
    • /
    • 2013
  • A fundamental study on laser-tissue interaction was conducted with the aim of developing a therapeutic medical device that can remove lesions on the intestinal wall by irradiating a high-power 808-nm infrared laser light incorporated in an endoscopic system. The perforation depth was linearly increased in the range of 1~4 mm in proportional to laser output (3~12 W) and irradiation time (5~20 s). We demonstrated that the perforation depth during laser irradiation was varied according to the tissue property of each extracted porcine organ. The measurement of the temperature distribution suggests that the energy is localized in the irradiation spot and transferred to deep tissue, which protects the surrounding tissue from thermal injury. These results can be used to set the driving parameters for a laser incision technique as an alternative to conventional surgical interventions.

Near Infrared Laser Based on Polymer Waveguide Bragg Grating (폴리머 광도파로 브래그 격자 기반의 근적외선 레이저)

  • Kim, Kyung-Jo;Son, Nam-Seon;Kim, Jun-Whee;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.179-183
    • /
    • 2011
  • An external cavity laser operating at near infrared wavelength is demonstrated by incorporating polymer waveguide Bragg reflectors. 3rd order Bragg grating and oversized rip waveguide structure were designed by using the effective index method and the transmission matrix method. The polymer waveguide was fabricated using polymer materials with refractive indices of 1.462 and 1.435 for the core and the cladding layers, respectively. The external feedback laser with 875-nm Bragg grating exhibits single mode lasing located at 850-nm wavelength with an output power of 0 dBm, a 20-dB bandwidth of 0.2 nm and a side mode suppression ratio of 40 dB.

Noncontact strain sensing in cement-based material using laser-induced fluorescence from nanotube-based skin

  • Meng, Wei;Bachilo, Sergei M.;Parol, Jafarali;Weisman, R. Bruce;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.259-270
    • /
    • 2022
  • This study explores the use of the recently developed "strain-sensing smart skin" (S4) method for noncontact strain measurements on cement-based samples. S4 sensors are single-wall carbon nanotubes dilutely embedded in thin polymer films. Strains transmitted to the nanotubes cause systematic shifts in their near-infrared fluorescence spectra, which are analyzed to deduce local strain values. It is found that with cement-based materials, this method is hampered by spectral interference from structured near-infrared cement luminescence. However, application of an opaque blocking layer between the specimen surface and the nanotube sensing film enables interference-free strain measurements. Tests were performed on cement, mortar, and concrete specimens with such modified S4 coatings. When specimens were subjected to uniaxial compressive stress, the spectral peak separations varied linearly and predictably with induced strain. These results demonstrate that S4 is a promising emerging technology for measuring strains down to ca. 30 𝜇𝜀 in concrete structures.

Development of a Transcutaneous Optical Information Transmission System for Total Artificial Heart Using Near Infrared Laser

  • Lee, Jung-Hoon;Kim, Wook-Eun;Choi, Jong-Hoon;Ahn, Jae-Mok;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.64-67
    • /
    • 1997
  • In the total artificial heart(TAH), a transcutaneous information transmission system(TITS) is vely important to monitor the TAH status and detect the device failure, and repair the possible problems. First of all, the communication channel(skin) and method were simulated in terms of transmittance, scattering, reflection and absorption, then the system was designed with size reduction including low power consumption and reliability compared to the previous one. The informations are transmitted through the skin(approximately 1cm in depth) by frequency modulated near infrared(NIR) pulses using 780nm laser diodes as transmitters and photodiode as receiver with high speed and high spectral sensitivity. The logic high and low frequencies are 3MHz, 1MHz respectively. The system is a bidirectional data link for more than 38.4Kbps data rate, full-duplex with a bit error rate of less than $10^{-5}$.

  • PDF

Near-infrared Subwavelength Imaging and Focusing Analysis of a Square Lattice Photonic Crystal Made from Partitioned Cylinders

  • Dastjerdi, Somayeh Rafiee;Ghanaatshoar, Majid;Hattori, Toshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.262-268
    • /
    • 2013
  • We study the focusing properties of a two-dimensional square-lattice photonic crystal (PC) comprising silica and germanium partitioned cylinders in air background. The finite difference time domain (FDTD) method with periodic boundary condition is utilized to calculate the dispersion band diagram and the FDTD method incorporating the perfectly matched layer boundary condition is employed to simulate the image formation. In contrast to the common square PCs in which the negative refraction effect occurs in the first photonic band without negative phase propagation, in our suggested model system, the frequency with negative refraction exists in the second band and in near-infrared region. In this case, the wave propagates with a negative phase velocity and the evanescent waves can be supported. We also discuss the dependency of the image resolution and its location on surface termination, source location, and slab thickness. According to the simulation results, spatial resolution of the proposed PC lens is below the radiation wavelength.

ANTIOXIDATIVE ACTIVITIES OF SOME DIETARY FIBERS DETERMINED BY AN NIR EMISSION SPECTROSCOPY

  • Suzuki, Nobutaka;Nagai, Takeshi;Tokunou, Kazunari;Mizumoto, Iwao;Matsuya, Hiroko;Yoda, Binkoh;Itami, Toshiaki;Takahashi, Yukinori;Kozawa, Akiya
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3102-3102
    • /
    • 2001
  • Constituents of several .representative seaweeds, such as wakame Undaria pinnatifida; hijikia Hizikia fusifome; and kombu Laminaria japonica, were found to have fairly large reaction rates determined by quenching experiments of emission spectra in the near-infrared region (1max: 1270 nm) from singlet oxygen (102). Emission spectra of singlet oxygen generated from an aqueous solution of Rose Bengal under irradiation with a green laser (330 nm) were measured by a near-infrared (NIR) emission spectrometer constructed in our laboratory. The quenching experiments were as follows: Intensities of emission spectra were measured in the absence (I0) and in the presence of the seaweed constituents (I): Ratios of I0/I were plotted against every concentration of the quenchers (Stern-Volmer plots) which gives a straight line. The slope of each line gives a kqt value which gives a quenching constant kq value (an antioxidative constant against singlet oxygen) when the t value (half-life time of singlet oxygen in the solvent used) was given. The determined reaction rates are between 103-105 (g/l)-ls-1; the larger ones are as large as that of ascorbic acid, 8.4 ${\times}$ 104 (g/1)-ls-1. Most of these seaweed constituents also showed antioxidative activity against auto-oxidation and superoxide as well as their immunological enhancing activity. These results suggest a possibility that dietary fibers which are supposed to prevent the large-intestine cancer by their physical properties may prevent the cancer, at least in parts, by their chemical, antioxidative activity.

  • PDF

Color Change Redox Behavior of the 1,3-Squaraine Dyes

  • Jun, Kun;Shin, Seung-Rim;Shin, Jong-Il;Park, Soo-Youl
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.53-60
    • /
    • 2006
  • The 1,3-bis(4-aminoaryl)squaraines showed color, change behavior, they were found to undergo reduction with sodium borohydride in solution to give colorless leuco compounds, which oxidized readily in air back to the colored squaraine dye. We have shown that initial observations indicated that the derivatives synthesized gave new donor-acceptor chromophores. It is also interesting to note than the oxidation of the leuco squaraines did initially produce a species absorbing about 630-680 wavelengths. The 1,3-squaraines have found many uses as near-infrared absorbers, laser dyes and photoconductive materials. Furthermore their color-change redox behavior has potential in the area of peroxidase-based bioassaysas oxidation sensitive indicator systems were investigated.

Facile Preparation of Pyrene-templated Hexagonal-shaped Gold Nanoplates

  • Lim, Eun-Kyung;Jang, Eunji;Haam, Seungjoo;Huh, Yong-Min
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • We have formulated hexagonal-shaped gold nanoplates in a single-step for photothermal therapy that gold ions to gold particles using pyrenyl dextran as reducible stabilizer and template. They exhibit anisotropic structure with broad surface plasmon resonance (SPR) band into near-infrared (NIR) spectrum enabling photothermal therapy. These gold nanoplates are also confirmed biocompatibility and high uptake efficiency due to binding with dextran molecules on the surface of gold nanoplates and cells. From in vitro phtothermal ablation study under NIR laser, gold nanoplates have the potential to use as photothermal agents.