• 제목/요약/키워드: Near-Field to Far-Field Transformation

검색결과 14건 처리시간 0.019초

다공관형 초음속 배기노즐의 공력소음에 관한 연구 (A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Perforated Tube)

  • 이동훈
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 1999
  • A perforated tube nozzle as an exhaust noise suppressor of a high-speed civil transport(HSCT) is proposed. The experimental results for the near and far field sound. the visualization of jet structures and the static pressure distributions in the jet passing through a perforated tube are presented and discussed in comparison with those for a simple tube. It is shown that the perforated tube has an excellent performance to greatly reduce the shock-associated noise and that also the turbulent mixing noise is reduced in the range of a limited jet pressure ratio. This considerable noise reduction is due to the pressure relief caused by the through-flow through the perforated holes. Such a pressure relief results in the transformation of normal shock waves into weak Mach waves of X -type and increases the thrust force of the perforated tube nozzle.

  • PDF

u-w 정식화에 근거한 지하수로 포화된 가로등방성 층상지반에서의 3차원 전달경계 (3D Transmitting Boundary for Water-Saturated Transversely Isotropic Soil Strata Based on the u-w Formulation)

  • 이진호;김재관;류정수
    • 한국지진공학회논문집
    • /
    • 제13권6호
    • /
    • pp.67-86
    • /
    • 2009
  • 이 연구에서는 u-w 정식화에 근거하여 일반적인 3차원 문제에 적용할 수 있는 지하수로 포화된 가로등방성 층상지반에서의 3차원 전달경계를 개발하였다. 지반 원역에서의 동적거동을 Fourier 급수로 전개하고, 각 항에 대한 동적강성을 u-w 정식화에 근거하여 유도하였다. 그리고 이를 Cartesian 좌표계에서 표현된 지반 근역의 3차원 유한요소와 결합할 수 있도록 변형하여 일반적인 3차원문제에도 적용할 수 있는 방법을 개발하였다. 개발된 방법을 강체 원형 기초의 동적거동 해석에 적용하고 기존의 해석 결과와 비교하여, 이 연구에서 개발된 전달경계가 정확함을 확인하였다. 또한 다양한 형태의 강체 기초 동적거동 해석에 개발된 전달경계를 적용하였고, 지하수로 포화된 가로등방성 층상지반에서 지하수위에 따라 강체 기초 동적거동의 변화 양상을 조사하여, 이 연구에서 개발된 방법의 활용성을 입증하였다.

The Strategy for the Development of Bio-Resources Utilizing Sericultural Products and Insects

  • Lee, Won-Chu;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제1권2호
    • /
    • pp.95-102
    • /
    • 2000
  • Experiments related to the field of sericulture started in the years 1900, in Korea. The sericultural experimental station in Korea was first organized among agricultural fields in Korea, indicating that sericulture in Korea was regarded as an important field of agriculture. Sericulture has been devoted to a great deal for the improvement of Korean economy during the past 100 years even under the coarse social circumstances caused particularly by the Korean War, However, the traditional Korean sericulture, aimed to produce silk yarn, was weakened, because of several reasons such as diminishment in silk consumption, increased labor charge in Korea, and so on. After this difficulty time, the Korean sericulture was revolutionized by shifting into functional sericulture from 1995, and the Korean sericulture now plays an important role for the improvement of human health. Mulberry tree, silkworm, and silk have a boundless potential to be developed as resources. We expect the know-how obtained through silkworm research would expand to the other insect research too. Thus, an area of entomological industry is hoped to prosper owing to insect research as well as sericulture. Mulberry tree is known to possess many bio-active substances, so it can be utilized as a resource for substitute medicine and a raw material for the functional food. In addition, an invention of genetically engineered mulberry variety, which will produce more bioactive substances, is expected. Silkworm is one of the most extensively studied insect organisms on the genome so far, Thus, silkworm is expected to be an "insect bio-factory", enabling mass-production of useful proteins by transformation, in which useful foreign genes are assimilated into silkworm. Silk can be transformed into several phases, because it possesses useful functional groups, which are sensitive to chemical reaction. Also, because silk fibrin itself is protein, it has a superior applicability as tissue membrane. Due to this usefulness, many researchers are now working on the silk as food, cosmetic, medical resource, and bioengineering resource, and even an expanded application is expected using silk in the future. Until now, the researches on insects were largely focused on the prevention of the damage caused by pest, instead of a beneficial aspect. However, insects are thought to be the fourth natural resource in the world, possessing unlimited potential as world resources in the near future. Therefore, our entomological research effort should be focused on the subject with potential for industrialization. Such subject includes selecting the insect species useful for environmental evaluation, construction of environment-friendly agricultural ecosystem, pollen mediation, pet, and advanced bio-resources.

  • PDF

유해 무기질의 자연정화 : 지화학적 고찰 (NATURAL ATTENUATION OF HAZARDOUS INORGANIC COMPONENTS: GEOCHEMISTRY PROSPECTIVE)

  • Lee, Suk-Young;Lee, Chae-Young;Yun, Jun-Ki
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2002년도 제18차 공동학술강연회 자연저감고 지질학 (대한 자원 환경지질학회)
    • /
    • pp.81-100
    • /
    • 2002
  • While most of regulatory communities in abroad recognize ' 'natural attenuation " to include degradation, dispersion, dilution, sorption (including precipitation and transformation), and volatilization as governing Processes, regulators prefer "degradation" because this mechanism destroys the contaminant of concern. Unfortunately, true degradation only applies to organic contaminants and short- lived radionuclides, and leaves most metals and long-lived radionuclides. The natural attenuation Processes may reduce the potential risk Posed by site contaminants in three ways: (i)contaminants could be converted to a less toxic form througy destructive processes such as biodegradation or abiotic transformations; (ii) potential exposure levels may be reduced by lowering concentrations (dilution and dispersion); and (iii) contaminant mobility and bioavailability may be reduced by sorption to geomedia. In this review, authors will focus will focul on "sorption" among the natural attenuation processes of hazardous inorganic contaminants including radionuclides. Note though that sorption and transformation processes of inorganic contaminants in the natural setting could be influenced by biotic activities but our discussion would limit only to geochemical reactions involved in the natural attenuation. All of the geochemical reactions have been studied in-depth by numerous researchers for many years to understand "retardation" process of contaminants in the geomedia. The most common approach for estimating retardation is the determination of distrubution coefficiendts ($K_{d}$) of contaminants using parametric or mechanistic models. As typocally used in fate and contaminant transport calculations such as predictive models of the natural attenuation, the $K_{d}$ is defined as the ratio of the contaminant concentration in the surrounding aqueous solution when the system is at equilibrium. Unfortunately, generic or default $K_{d}$ values can result in significant error when used to predict contaminant migration rate and to select a site remediation alternative. Thus, to input the best $K_{d}$ value in the contaminant transport model, it is essential that important geochemical processes affecting the transport should be identified and understood. Precipitation/dissolution and adsorption/desorption are considered the most important geochemical processes affecting the interaction of inorganic and radionuclide contaminants with geomedia at the near and far field, respectively. Most of contaminants to be discussed in this presentation are relatively immobile, i.e., have very high $K_{d}$ values under natural geochemical environments. Unfortunately, the obvious containment in a source area may not be good enough to qualify as monitored natural attenuation site unless owner demonstrate the efficacy if institutional controls that were put in place to protect potential receptors. In this view, natural attenuation as a remedial alternative for some of sites contaminated by hazardous-inorganic components is regulatory and public acceptance issues rather than scientific issue.

  • PDF