• Title/Summary/Keyword: Near-Field Communication

Search Result 274, Processing Time 0.02 seconds

Development ofn Sharing Space Access Management System based on Mobile Key and RCU(Room Control Unit) (모바일 키 및 RCU에 기반한 공유공간 출입관리 시스템 개발)

  • Jung, Sang-Joong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.202-208
    • /
    • 2020
  • Recently, the importance of non-face-to-face has been emphasized due to COVID-19, and the use of sharing spaces is also expanding. The use of uncontact check-in technology for access control of sharing spaces reduces waiting time and optimizes workers' efficiency, resulting in operational cost savings. In this paper, we propose a sharing space access management system based on a mobile key and RCU (Room Control Unit), access to the facility using a mobile key, and monitor the facility using an RCU. Proposal system is for shared accommodation, rental field (residence, sale-selling hotel), shared office, etc. when there is a one-time visitor on a specific day and time, the corresponding password is delivered to the mobile platform to expose and key the existing password. It is supported by a field-adaptive system that can reduce discomfort such as delivery. In order to test the operation of the proposed integrated system, tests were conducted according to scenarios to understand the overall status of the user's reservation, check-in, and check-out, and a 100% success rate was derived for each item by setting performance indicators to prove test reliability.

High-Order Surface Gradient Coil Design Using Target Field Approach

  • Lee, J.K.;Yang, Y.J.;Jeong, S.T.;Choi, H.J.;Cho, Z.H.;Oh, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • The purpose of this paper is to design high-order (or radial) surface gradient coil (SGC), which can provide multi-dimensional spatial selection. Although the spatial Selection with High-Order gradienT (SHOT) can provide a 2-D selection with only one selective RF pulse, the high-order gradient pro- duced by conventional cylindrical-shape coils has not been clinically useful due to the large selection size caused by the limited radial gradient intensity. However, by using the proposed high-order SGCs located near the imaging region, the size of volume selection can be reduced to a clinically useflll size of 1-2 cm in diameter by applying stronger radial gradient field with much less gradient driving power. So far radial SGCs have been designed by using the field component method and may cause distortion in the selection shapes. In this paper, by using the target field approach for the coil design, selected volumes became almost circular. A 40 cm-by-40 cm $z^2$_surface gradient coil has been designed and implemented by using the target field approach. Phantom and volunteer studies have been performed Experimental results using spatially localized MRI show good agreement to the theoretically predicted behavior.

  • PDF

Smartphone Color-Code based Gate Security Control

  • Han, Sukyoung;Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Lee, Seungyoun;Lee, Juyoung;Kim, Jintae;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.66-71
    • /
    • 2016
  • Smart building gate security control system using smartphone integrated with near field communication (NFC) has become part of daily life usage these days. The technology change in replacing RF NFC device using visible light communication technology based approach growing faster in recent days. This paper propose a design and development of gate security control system using color code based user authentication ID generation as part of an intelligent access control system to control automatic door open and close. In this approach gate security access control use the recent visible light communication technology trends to transfer the user specific authentication code to door access control system using color code on smartphone screen. Using a camera in the door access control system (ACS), color codes on smartphone screens are detected and matched to the database of authenticated user to open the door automatically in gate security system. We measure the visual light communication technology efficiency as a part of the research and the experiments have revealed that more than 95% users authenticated correctly at the suggested experiment environment on gate security control system.

Performance Analysis of the Underwater Acoustic Communication with Low Power Consumption by Sea Trials (해상실험을 통한 저전력 수중음향통신 기법의 성능 분석)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.811-816
    • /
    • 2011
  • In this paper, we analysis to consider the performance of PSPM (Phase Shift Pulse-position Modulation), the one of the low power communication technique, in near-field underwater sound channel by sea trial. PSPM is a QPSK(Quadrature Phase Shift Keying) modulation combined with PPM(Pulse Position Modulation) for low power communication in WBAN(Wireless Body Area Network). It is known that the bandwidth efficiency of PSPM is lower than conventional PSK but the power efficiency increases. In this paper, we will analyze the BER performance of PSPM using data acquired from the sea trials. The BER of QPSK was $6.04{\times}10^{-2}$, PSPM was $3.5{\times}10^{-1}$. Also, PSNR of QPSK was 9.37 dB and in case of PSPM was 9.11 dB.

A Design and Implementation of NFC Bridge Chip (NFC 브릿지 칩 설계 및 구현)

  • Lee, Pyeong-Han;Ryu, Chang-Ho;Chun, Sung-Hun;Kim, Sung-Wan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.96-101
    • /
    • 2015
  • This paper describes a design and implementation of the NFC bridge chip which performs interface between kinds of devices and mobile phones including NFC controller through NFC communication. The NFC bridge chip consists of the digital part and the analog part which are based on NFC Forum standard. Therefore the chip treats RF signals and then transforms the signal to digital data, so it can interface kinds of devices with the digital data. Especially the chip is able to detect RF signals and then wake up the host processor of a device. The wakeup function dramatically decreases the power consumption of the device. The carrier frequency is 13.56MHz, and the data rate is up to 424kbps. The chip has been fabricated with SMIC 180nm mixed-mode technology. Additionally an NFC bridge chip application to the blood glucose measurement system is described for an application example.

Calculation of the Electromagnetic Fields Distribution around the Human Body and Study of Transmission Loss Related with the Human Body Communication (인체 통신에 따른 인체 주변에서의 전기장 분포 계산 및 전송 손실 연구)

  • Ju, Young-Jun;Gimm, Youn-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.251-257
    • /
    • 2012
  • Human body communication means transmitting and receiving data through human body medium or through free space along with the human body skin. Electric field distribution around the human body between the transmitter and the receiver were calculated at five different frequencies with 5 MHz interval between 10 MHz and 30 MHz. Commercial electromagnetic simulation tool was used for the calculation of E-field distributions applying the Korean standard male model including 29 different kinds of human tissues. After calculating specific absorption rate(SAR) values on back of the hand, it was compared with International Commission on Non-Ionizing Radiation Protection(ICNIRP) human protection guideline. While conductivities(${\sigma}$) and relative permittivities(${\varepsilon}_r$) of the human tissues for each frequency were input as the analyzing parameters, electric field intensities near both hands were integrated along the integral line between the nearby electrodes for the calculation of the transmitting and receiving voltages whose ratio was defined as channel loss. The calculated channel losses were about ($75{\pm}1$) dB and showed nearly flat response all through the evaluated frequencies.

Hardware Architecture Design and Implementation of IPM-based Curved Lane Detector (IPM기반 곡선 차선 검출기 하드웨어 구조 설계 및 구현)

  • Son, Haengseon;Lee, Seonyoung;Min, Kyoungwon;Seo, Sungjin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.304-310
    • /
    • 2017
  • In this paper, we propose the architecture of an IPM based lane detector for autonomous vehicles to detect and control the driving route along the curved lane. In the IPM image, we divide the area into two fields, Far/Near Field, and the lane candidate region is detected using the Hough transform to perform the matching for the curved lane. In autonomous vehicles, various algorithms must be embedded in the system. To reduce the system resources, we proposed a method to minimize the number of memory accesses to the image and various parameters on the external memory. The proposed circuit has 96% lane recognition rate and occupies 16% LUT, 5.9% FF and 29% BRAM in Xilinx XC7Z020. It processes Full-HD image at a rate of 42 fps at a 100 MHz operating clock.

A Design of MMIC Mixer for I/Q Demodulator of Non-contact Near Field Microwave Probing System (비접촉 마이크로웨이브 프루브 시스템의 I/Q Demodulator를 위한 MMIC Mixer의 설계)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1023-1028
    • /
    • 2012
  • A MMIC (Monolithic Microwave Integrated Circuit) mixer chip using the Schottky diode of an GaAs p-HEMT process has been developed for the I/Q demodulator of non-contact near field microwave probing system. A single balanced mixer type is adopted to achieve simple structure of the I/Q demodulator. A quadrature hybrid coupler and a quarter wavelength transmission line for 180 degree hybrid are realized with lumped elements of MIM capacitor and spiral inductor to reduce the mixer chip size. According to the on-wafer measurement, this MMIC mixer covers RF and LO frequencies of 1650MHz to 2050MHz with flat conversion loss. The MMIC mixer with miniature size of $2.5mm{\times}1.7mm$ demonstrates conversion loss below 12dB for both variations of RF and LO frequencies, LO-to-IF isolation above 43dB and RF-to-IF isolation above 23dB, respectively.

Development of a Modular Clothing System for User-Centered Heart Rate Monitoring based on NFC (NFC 기반 사용자 중심의 모듈형 심박측정 의류 시스템 개발)

  • Cho, Hakyung;Cho, SangWoo;Cho, Kwang Nyun
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.51-60
    • /
    • 2020
  • This study aimed to develop a modular smart clothing system for heart rate monitoring that reduces the inconvenience caused by battery charging and the large size of measurement devices. The heart rate monitoring system was modularized into a temporary device and a continuous device to enable heart rate monitoring depending on the requirement. The temporary device with near-field communication (NFC) and heart rate sensors was developed as a clothing attachment type that enables heart rate monitoring via smart phone tagging when required. The continuous device is based on Bluetooth Low Energy (BLE) communication and batteries and was developed to enable continuous heart rate measurement via a direct connection to the temporary device. Furthermore, the temporary device was configured to connect with a textile electrode made of a silver-based knitted fabric designed to be located below the pectoralis major muscle for heart rate measurement. Considering the user-experience factors, key functions, and the ease of use, we developed an application to automatically log through smart phone tagging to improve usability. To evaluate the accuracy of the heart rate measurement, we recorded the heart rate of 10 healthy male subjects with a modular smart clothing system and compared the results with the heart rate values measured by the Polar RS800. Consequently, the average heart rate value measured by the temporary system was 85.37, while that measured by the reference device was 87.03, corresponding to an accuracy of 96.73%. No significant difference was found in comparison with the reference device (T value = -1.892, p = .091). Similarly, the average heart rate measured by the continuous system was 86.00, while that measured by the reference device was 86.97, corresponding to an accuracy of 97.16%. No significant difference was found in terms of the heart rate value between the two signals (T value = 1.089, p = .304). The significance of this study is to develop and validate a modular clothing system that can measure heart rates according to the purpose of the user. The developed modular smart clothing system for heart rate monitoring enables dual product planning by reducing the price increase due to unnecessary functions.

Design of Various WBAN Antennas Considering for the Location on a Human Body (인체 상 위치를 고려한 다양한 WBAN 안테나 설계)

  • Tak, Jinpil;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1095-1103
    • /
    • 2014
  • WBAN has received great attention recently due to its versatile applicability. In this paper, antennas suitable for WBAN communication depending on the locations of mobile devices and the manufacturing of a human equivalent phantom are introduced. The effect of the body on the communication performance is largely dependent on the locations of devices. Specifically, the radiation and return loss characteristics of the antenna are greatly influenced by the characteristics of a medium existing in the near-field of an antenna. Thus, the proper WBAN antenna design is important in establishing a successful communication link between the transceivers. To consider the effect of the body on the antenna performance, the human equivalent phantom is also important factor in the WBAN antenna design and measurement. In introduction, categorization of the WBAN communication channel is introduced and antenna characteristics required for each communication channel are described. In the main subject section, several WBAN antenna design examples along with the implementation of the human equivalent phantom are discussed. In conclusion, the factors, which have to be considered in the design process, and future research are mentioned.