• Title/Summary/Keyword: Near-Critical Water

Search Result 90, Processing Time 0.019 seconds

The heat transfer and pressure drop characteristics of $CO_2$ during supercritical region in a horizontal tube (초임계 영역에서 수평관내 $CO_2$ 열전달과 압력강하)

  • 이동건;오후규;김영률;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.500-508
    • /
    • 2004
  • The heat transfer coefficients during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, and a gas cooler(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flow meter. The gas cooler is a counterflow heat exchanger by cooled water flowing in the annulus. The $CO_2$ flows in the horizontal stainless steel tube. which is 9.53mm in O.D. and 7.75mm in I.D. The gas cooler is 6 [m] in length. which is divided into 12 subsections, respectively. The experimental conditions considered in the study are following range of variables : refrigerant temperature is between 20 and $100^{\circ}C$. mass fluxes ranged from 200 to 400kg/($m^2$.s), average pressure varied from 7.5 to 10.0MPa. The main results were summarized as follows : The friction factors of $CO_2$ in the gas cooler show a relatively good agreement with those predicted by Blasius' correlation. The local heat transfer coefficient in the gas cooler has compared with most of correlations, which are the famous ones for forced convection heat transfer of turbulent flow. The results show that the local heat transfer coefficient of gas cooler agrees well with the correlation by Bringer-Smith except that at the region near pseudo critical temperature. while that at the near pseudo critical temperature is higher than the correlation.

Study on Damage Mechanism Analysis and Recovery Characteristic of the Large Scale Steam Turbine Cased by Water Induction (대형 증기터빈 물유입에 의한 손상메커니즘 분석과 원상복구특성 연구)

  • Kim, D.Y.;Park, G.H.;Lee, B.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the damage mechanism of large scale steam turbine due to water induction was analyzed and recovery characteristics were reviewed. A turbine consists of the rotating rotor and the stationary casing, and the clearance between them is very small for the efficiency enhancement. If water induction, while relatively cold steam or water is introduced into turbine, occurs, the considerable humping is caused at the casing near the initial water induction point and that induces the rubbing between rotor and casing. Finally, it leads to the catastrophic failure. Bowed rotor has the different characteristics in the recovery depending on damage degree. The elastic deformation due to light rubbing is recovered by turning the rotor with 3 rpm under normal operation condition, but most plastic deformation due to rubbing deforms the local microstructure and that results in permanent deformation which could not be recovered under normal operation condition. Bowed rotor has diverse characteristics depending on the recovery method, and the method is empirical and needs the cutting edge technology. Careful recovery treatment of the rotor will eliminate the risks and secure the high quality rotor similar to new rotor. If any critical error is made during the recovery, the rotor would not be recovered permanently and it should be scrapped.

Seismic torsional vibration in elevated tanks

  • Dutta, Sekhar Chandra;Murty, C.V.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.615-636
    • /
    • 2000
  • Some elevated water tanks have failed due to torsional vibrations in past earthquakes. The overall axisymmetric structural geometry and mass distribution of such structures may leave only a small accidental eccentricity between centre of stiffness and centre of mass. Such a small accidental eccentricity is not expected to cause a torsional failure. This paper studies the possibility of amplified torsional behaviour of elevated water tanks due to such small accidental eccentricity in the elastic as well as inelastic range; using two simple idealized systems with two coupled lateral-torsional degrees of freedom. The systems are capable of retaining the characteristics of two extreme categories of water tanks namely, a) tanks on staging with less number of columns and panels and b) tanks on staging with large number of columns and panels. The study shows that the presence of a small eccentricity may lead to large displacement of the staging edge in the elastic range, if the torsional-to-lateral time period ratio $({\tau})$ of the elevated tanks lies within a critical range of 0.7< ${\tau}$ <1.25. Inelastic behaviour study reveals that such excessive displacement in some of the reinforced concrete staging elements may cause unsymmetric yielding. This may lead to progressive strength deterioration through successive yielding in same elements under cyclic loading during earthquakes. Such localized strength drop progressively develop large strength eccentricity resulting in large localized inelastic displacement and ductility demand, leading to failure. So, elevated water tanks should have ${\tau}$ outside the said critical range to avoid amplified torsional response. The tanks supported on staging with less number of columns and panels are found to have greater torsional vulnerability. Tanks located near faults seem to have torsional vulnerability for large ${\tau}$.

Critical Heat Flux under Forced and Natural Circulations of Water at Low-Pressure, Low-Flow Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.315-320
    • /
    • 1995
  • The CHF phenomenon has been investigated for water flow under forced and natural circulation modes with vertical round tubes at low pressure and low flow condition. Experiments have been performed by using three different test sections for mass fluxes below 400 kg/㎡s under near atmospheric pressure. The experimental data for forced and natural circulation are compared with each other. To predict the flow rate at the two-phase region our test condition has been analyzed by RELAP5/MOD3 because the local two-phase condition inside the stainless steel tube cannot be directly measured. To predict the CHF with accuracy we have to consider the parameters at the single-phase region as well as the flow behavior at the two-phase region.

  • PDF

Calculation of the Hydrocarbon and Water Dew points of Natural Gas (천연가스의 탄화수소 및 물 이슬점 계산)

  • Ha, Youngcheol;Lee, Seongmin;Her, Jaeyoung;Lee, Kangjin;Lee, Seunjun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.565-571
    • /
    • 2009
  • This study was conducted to evaluate hydrocarbon and water dew points of natural gas. For this purpose, algorithm of suppressing divergence was devised to evaluate hydrocarbon dew point up to near critical point and algorithm for finding water dew points lower than that of hydrocarbon, which cannot be calculated by commercial dew point program, was developed. The evaluated values were compared to commercial program and ISO reference values, and the results showed that deviations were zero.

Contamination Sources of Several Potentially Hazardous Compounds Found at the Gap Stream and the Miho Stream, Two Major Tributaries of the Geum River (금강 수계 주요지류인 갑천과 미호천에서 잠정유해물질 오염원 확인 연구)

  • Lee, Jun-Bae;Lee, Jay-Jung;Cho, Yoon-Hae;Yoon, Jo-Hee;Hong, Seoun-Hwa;Lee, Dae-Hee;Lee, Dae-Hee;Cho, Young-Hwan;Shin, Ho-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • BACKGROUND: Water quality is of concern to water utility operators, public health officials, and populations using the water. If any contaminant is released from a point of entry, it could be spread rapidly throughout the water stream. So the identification of the location of the points of entry and its release history are critical informations to establish the management strategy.METHODS AND RESULTS: Aniline, nonylphenol, pentachlorophenol and formaldehyde in 39 surface water samples were analysed using Gas chromatography-mass spectrometry (GC-MS) methods. Formaldehyde, aniline and nonylphenol were mainly detected in the near sites where industrial waste water and domestic sewage were discharged into stream. But pentachlorophenol was detected in the downstream samples where pulp manufacturing plants were operated.CONCLUSION: Results indicate that pentachlorophenol found in main stream of Guem river was mainly introduced from pulp manufacture industries. Otherwise, formaldehyde, aniline and nonylphenol were mainly contaminated from the industrial waste water and domestic sewage.

Effect of Livestock Liquid Manure Released at a Rice Field on Quality of Soil and Water in the Saemangeum Watershed (가축분뇨 액비 살포가 새만금유역에서의 논토양과 수질에 미치는 영향)

  • Kim, Mi-Sug;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.19-31
    • /
    • 2016
  • The Saemangeum watershed is required to manage water pollution effectively but the effect of liquid manure (LM) on soil and water quality in the basin is not clearly identified as yet. This study aims at assessing the effect on soil of a rice field and water quality of water bodies near the rice field during rice-crop time period to find out the effect of LM, the effect of rainfall, and the effect of rice-crop environment on soil and water quality by analyzing data of nitrogen components. As a result of the LM distribution, $NO_3-N$ was much higher than other N components in the entire soil layers and it was accelerated by rainfall right after the LM distribution. Compared to chemical fertilizer (CF), LM was slightly affected but still influenced on the surface water quality. During weak rainfall, low nitrogen concentration in topsoil was resulted as NH3-N decreased and Org-N and $NO_3-N$ increased. $NO_3-N$ concentration in the water of irrigation canals increased with time. During intensive rainfall, $NO_3-N$ and Org-N of the soil were measured highly in the submerged condition, while the water quality of the rice field was lower due to flooding into the irrigation canal as well as the growth of the rice plants. Also, total nitrogen was increased more than 7 times and it showed serious water quality deterioration due to LM and excessive fertilizer distribution, and rainfall during all rice-crop processes. The effect of LM on water quality should be studied consistently to provide critical data while considering weather condition, cropping conditions, soil characteristics, and so on.

Fatigue Crack Growth Characteristics of the Pressure Vessel Steel SA 508 Cl. 3 in Various Environments

  • Lee, S. G.;Kim, I. S.;Park, Y. S.;Kim, J. W.;Park, C. Y.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.526-538
    • /
    • 2001
  • Fatigue tests in air and in room temperature water were performed to obtain comparable data and stable crack measuring conditions. In air environment, fatigue crack growth rate was increased with increasing temperature due to an increase in crack tip oxidation rate. In room temperature water, the fatigue crack growth rate was faster than in air and crack path varied on loading conditions. In simulated light water reactor (LWR) conditions, there was little environmental effect on the fatigue crack growth rate (FCGR) at low dissolved oxygen or at high loading frequency conditions. While the FCGR was enhanced at high oxygen condition, and the enhancement of crack growth rate increased as loading frequency decreased to a critical value. In fractography, environmentally assisted cracks, such as semi-cleavage and secondary intergranular crack, were found near sulfide inclusions only at high dissolved oxygen and low loading frequency condition. The high crack growth rate was related to environmentally assisted crack. These results indicated that environmentally assisted crack could be formed by the Electrochemical effect in specific loading condition.

  • PDF

Quantitative Measurements of Complex Flow Field Around a Hydrofoil Using Particle Image Velocimetry (PIV를 이용한 수중익 주위 복잡유동장의 정량적 계측)

  • B.S. Hyun;K.S. Choi;D.H. Doh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • An experimental study has been carried out at circulating water channel to investigate the viscous flow around breaking waves generated by a submerged hydrofoil(NACA0012). Detailed flow measurements were made at several critical points including an incipient wave-breaking point and a fully-developed wave breaker. Particle Image Velocimetry(PIV) was employed to visualize the flow field very close to the breaker as well as at the near- and far-wake of the breaker. Generation, development and decay of the wave breaker have been investigated. It is found that PIV technique could be well applied to the complex flow field, including the vortical structures near the free surface as well as the wake of the hydrofoil.

  • PDF

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.