• Title/Summary/Keyword: Near Space

Search Result 1,780, Processing Time 0.031 seconds

Thick Accretion Disk and Its Super Eddington Luminosity around a Spinning Black Hole

  • Jang, Uicheol;Kim, Hongsu;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.39-44
    • /
    • 2021
  • In the general accretion disk model theory, the accretion disk surrounding an astronomical object comprises fluid rings obeying Keplerian motion. However, we should consider relativistic and rotational effects as we close in toward the center of accretion disk surrounding spinning compact massive objects such as a black hole or a neutron star. In this study, we explore the geometry of the inner portion of the accretion disk in the context of Mukhopadhyay's pseudo-Newtonian potential approximation for the full general relativity theory. We found that the shape of the accretion disk "puffs up" or becomes thicker and the luminosity of the disk could exceed the Eddington luminosity near the surface of the compact spinning black hole.

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

Rendezvous Mission to Apophis: I. Mission Overview

  • Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2021
  • An asteroid is important for understanding the condition of our solar system in early-stage because an asteroid, considered as a building block of the solar system, preserves the information when our solar system was formed. It has been continuously flowing into the near-Earth space, and then some asteroids have a probability of impacting Earth. Some asteroids have valuable minerals and volatiles for future resources in space activity. Korean government clarified, in the 3rd promotion plan for space activity, an asteroid sample return mission by the mid-2030s. However, it is almost impossible to do so based on only a single experience of an exploration mission to the Moon, Korea Pathfinder Lunar Orbiter, which will be launched in mid-2022. We propose a Rendezvous Mission to Apophis(RMA), beneficial in terms of science, impact hazardous, resource, and technical readiness for the space exploration of Korea.

  • PDF

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

Relationship between plasma flows and the near-Earth tail dipolarizations

  • Lee, Dae-Young;Kim, H.S.;Ohtani, S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.29.1-29.1
    • /
    • 2011
  • The magnetic dipolarizations at the tail are often, if not always, associated with plasma flows of some magnitude. The associated flow direction is known to be earthward most often but not necessarily always. It is the primary goal of this paper to clarify the association between dipolarizations and the associated flow characteristics in general, but with a primary emphasis on tailward flow cases. Based on a number of dipolarizations that we identify at the near-Earth tail using the THEMIS tail observations we first confirm that dipolarizations can in general initiate in association with both earthward and tailward flows. Also, the main direction of the plasma flow, whether being earthward or tailward, is not critical in determining the intensity of the dipolarizations. We actually identify some events of tailward flow-associated dipolarizations that are as much intense as the earthward flow-associated events. The occurrence rate of the tailward flow-associated dipolarizations is mainly concentrated in the radial region of < 10 RE and in the local time region of 22-01 hr. However, its relative occurrence rate is rather low, ~19 % in the radial region and ~15.3 % in the local time region, as compared to that for the events associated with all other types of flows. Furthermore, the flow direction often changes no matter whether it is initially earthward or tailward near the onset time. As a consequence, the net transport of the magnetic flux during the main duration of the dipolarization process is earthward for nearly all of the dipolarizations that initiate with dominantly tailward flows near the onset, as is the case for those that initiate with dominantly earthward flows.

  • PDF

LIGHT CORVES AND ROCHE CONFIGURATIONS OF NEAR-CONTACT BINARY AX DRACONIS (근접촉쌍성 AX Draconis의 광도곡선과 로쉬모형)

  • 김호일;이재우;김천휘;윤재혁;이우백
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.239-248
    • /
    • 2003
  • We completed the light curves of near-contact binary system AX Dra for 11 nights from March 2001 to May using the 61-cm reflector and VR filters at Sobaeksan Optical Astronomy Observatory. From our observations, seven new times of minimum light (three timings to. primary eclipse, four. for. secondary) and the light elements consistent with recent observations were determined. Using the Wilson-Devinney binary code and the q-search method, we analyzed our VR light curves for various Roche configurations and mass ratios. As the results, we found the eclipsing binary AX Dra to be the FO Vir-type near-contact binary system interpreted as a detached or a semi-detached system, with the secondary filling its Roche lobe and the primary almost. Unlike the statistical study(Shaw 1994) of the FO Vir-type near-contact binary system, our VR light curves showed the O'Connell effect of all the same type and it's dimensions was about $0^{m}.008$.

SPECTROSCOPIC AND PHOTOMETRIC STUDY OF STARBURST GALAXIES: OPTICAL AND NEAR INFRARED PROPERTIES OF A BLUE COMPACT DWARF GALAXY MRK 49 IN THE VIRGO CLUSTER

  • Sung, Eon-Chang;Kyeong, Jae-Mann;Byun, Yong-Ik
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.5
    • /
    • pp.121-137
    • /
    • 2008
  • We present optical and near-infrared imaging and long-slit spectroscopy for the blue compact dwarf galaxy (BCD) Mrk 49 in the Virgo Cluster. The surface brightness distribution analysis shows that Mrk 49 consists of an off-centered blue bright compact core of r = 10" and a red faint outer exponential envelope. The $H_{\alpha}$ image and color difference suggest that these two components have different stellar populations: a high surface brightness population of massive young stars and an underlying low surface brightness population of older stars. The redder near-infrared colors of the inner most region suggest that the near-infrared flux of Mrk 49 originates from evolved massive stars associated with the current star-forming activity. The total apparent magnitude is $B_T\;=\;14.32$ mag and the mean effective surface brightness is ${\mu}_{eff}(B)\;=\;21.56$ mag $arcsec^{-2}$. Long-slit spectroscopy shows that Mrk 49 rotates apparently as a solid body within r = 10" in a plane at position angle 55 degrees with an amplitude of about $20\;km\;sec^{-1}$. The measured radial velocity of Mrk 49 was derived as $1,535\;km\;sec^{-1}$; and the total mass of stars and gases is in the range of 3 to $6\;{\times}\;10^9\;M_{\odot}$. The mass-to-light ratios for the central region of Mrk 49 in I and B band are estimated 1.0 and 0.5, respectively. The upper limit of the dark matter to visible matter ratio seems to be < 5. The oxygen abundance is $12\;+\;\log(O/H)\;=\;8.21\;{\pm}\; 0.1$ which is about one quarter of the solar value while the relative helium abundance appears to be similar to that of the sun.

A Study on the Facilities Layout of Lower Floor and Space Characteristics Through Analysis of Newly Established Schools in Chungbuk since 2010 (충북의 2010년 이후 신설된 학교 분석을 통한 저층부 배치 시설 및 공간 특성 연구)

  • Kang, Hye-Jin;Jung, Jin-Ju
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.22 no.2
    • /
    • pp.3-13
    • /
    • 2015
  • The policy of the Ministry of education through the social awareness and issues are being changed. Accordingly, in response to the school building which also has to be changed. This study is Low-floor(1~2 floor) for high accessibility, important management and a lot of locomotion. This study is analysis by floor of newly established schools in Chungbuk. Facility and space on the possible low-floor situated are classified administrative zone, health zone, student support + local exchange zone, STEAM(creativity, personality) supporting zone. The administrative area includes administration office, principal's office and board rooms. The administrative zone is located against schoolyard. Because it is possible visual control of schoolyard. also it controls visitor access so it is placed near main entrance. Health zone is located near a special class, counseling center and wee class for emergency situation. and is located near schoolyard for visual control. Student support + local exchange area includes library and computer lab, audio-visual room, auditorium or gymnasium. It put more emphasis resident welfare, culture and education. So it opens for local residents. It is located center of few stories or near entrance. STEAM(creativity, personality) supports science lab, art room, family room. It is possible such a theory class, experience class and indoor and outdoor class. It is located few floors. This study is used as a reference for school building projects planing.

Rotational instability as a source of asteroidal dust near Earth

  • Jo, Hangbin;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.44.2-45
    • /
    • 2021
  • As implied by the zodiacal light and spacecraft impact measurements, the space between large bodies in our Solar System is filled with interplanetary dust particles (IDPs). IDPs give us deeper insight into the composition and evolution of the Solar System, as well as being a crucial reference for extrasolar research. IDPs can be interpreted as bearers of carbon and organic materials, and thus, their interaction with Earth can be considered as important factors for the birth of terrestrial life. One of the key routes of IDPs entering Earth is via meteoroid streams (Love and Brownlee 1993). The Geminid meteoroid stream is a notable example. Together with its source asteroid (3200) Phaethon, the Phaethon-Geminid stream complex (PGC) (Whipple 1983; Gustafson 1989) can potentially provide information on the properties and evolution of IDPs in near-Earth space. DESTINY+* is a JAXA/ISAS spacecraft planned to launch in 2024 to explore the physical and chemical features of near-Earth IDPs and uncover the dust ejection mechanism of active near-Earth asteroids, especially Phaethon (Arai et al. 2018). Previous studies on the dust ejection mechanism of Phaethon have various degrees of success in explaining the ejection of submillimeter particles and try to recreate the dust replenishment rate of the Geminid stream. However, none of them are satisfactory for explaining the observed Geminid stream, especially for larger particles of a millimeter and centimeter scales. Inspired by the discovery of rotational mass shedding in the Main Belt region (Jewitt et al., 2014), we investigate a dust ejection scenario by rotational instability on Phaethon. Using the N-body integrator MERCURY6 (Chambers 1999; modified by Jeong 2014), we performed a long-term integration of dust particles of various sizes ejected at ~1 m/s. Through this process, we discuss the implications Phaethon's rotation may have on its ejection, the formation and evolution of IDP by this mechanism, and contribute to the DESTINY+ mission.

  • PDF

IGRINS MIRROR MOUNT DESIGN FOR FIVE FLAT MIRRORS (다섯 개의 평면경을 위한 IGRINS 미러 마운트 설계)

  • Oh, Jae Sok;Park, Chan;Kim, Kang-Min;Chun, Moo-Young;Yuk, In-Soo;Oh, Heeyoung;Jeong, Ueejeong;Yu, Young Sam;Lee, Hanshin;Lee, Sungho
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.17-29
    • /
    • 2015
  • The IGRINS is a near infrared high resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. We present design and fabrication of the optomechanical mount for the five mirrors, i.e., an input fold mirror, a slit mirror, a dichroic, and two camera fold mirrors. Based on the structure analysis and the thermal analysis of finite element methods, the optomechanical mount scheme satisfies the mechanical and the thermal design requirements given by the optical tolerance analysis. The performance of the fabricated mirror mounts has been verified through three IGRINS commissioning runs.