• 제목/요약/키워드: Near

검색결과 22,526건 처리시간 0.04초

Fragility assessment of buckling-restrained braced frames under near-field earthquakes

  • Ghowsi, Ahmad F.;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.173-190
    • /
    • 2015
  • This study presents an analytical investigation on the seismic response of a medium-rise buckling-restrained braced frame (BRBF) under the near-fault ground motions. A seven-story BRBF is designed as per the current code provisions for five different combinations of brace configurations and beam-column connections. Two types of brace configurations (i.e., Chevron and Double-X) are considered along with a combination of the moment-resisting and the non-moment-resisting beam-to-column connections for the study frame. Nonlinear dynamic analyses are carried out for all study frames for an ensemble of forty SAC near-fault ground motions. The main parameters evaluated are the interstory and residual drift response, brace displacement ductility, and plastic hinge mechanisms. Fragility curves are developed using log-normal probability density functions for all study frames considering the interstory drift ratio and residual drift ratio as the damage parameters. The average interstory drift response of BRBFs with Double-X brace configurations significantly exceeded the allowable drift limit of 2%. The maximum displacement ductility characteristics of BRBs is efficiently utilized under the seismic loading if these braces are arranged in the Double-X configurations instead of Chevron configurations in BRBFs located in the near-fault regions. However, BRBFs with the Double-X brace configurations exhibit the higher interstory drift and residual drift response under near-fault ground motions due to the formation of plastic hinges in the columns and beams at the intermediate story levels.

유량에 따른 축류홴의 익단누설와류 특성 (Flow Characteristics of a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan)

  • 장춘만;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1383-1388
    • /
    • 2004
  • The flow characteristics in the blade passage of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From the relative velocity distributions near the rotor tip, large axial velocity decay is observed at near stall condition, which results in large blockage compared to that at the design condition. Througout the flow measurements using a quasi-orthogonal measuring points to the tip leakage vortex, it is noted that the radial position of the tip leakage vortex is distributed between 94 and 96 percent span for all flow conditions. High spectrum density due to the large fluctuation of the tip leakage vortex is observed near the blade suction surface below the frequency of 1000 Hz at near stall condition.

  • PDF

Resource allocation in downlink SWIPT-based cooperative NOMA systems

  • Wang, Longqi;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.20-39
    • /
    • 2020
  • This paper considers a downlink multi-carrier cooperative non-orthogonal multiple access (NOMA) transmission, where no direct link exists between the far user and the base station (BS), and the communication between them only relies on the assist of the near user. Firstly, the BS sends a superimposed signal of the far and the near user to the near user, and then the near user adopts simultaneous wireless information and power transfer (SWIPT) to split the received superimposed signal into two portions for energy harvesting and information decoding respectively. Afterwards, the near user forwards the signal of the far user by utilizing the harvested energy. A minimum data is required to ensure the quality of service (QoS) of the far user. We jointly optimize power allocation, subcarrier allocation, time allocation, the power allocation (PA) coefficient and the power splitting (PS) ratio to maximize the number of data bits received at the near user under the energy causality constraint, the minimum data constraint and the transmission power constraint. The block-coordinate descent method and the Lagrange duality method are used to obtain a suboptimal solution of this optimization problem. In the final simulation results, the superiority of the proposed NOMA scheme is confirmed compared with the benchmark NOMA schemes and the orthogonal multiple access (OMA) scheme.

Effect of near field earthquake on the monuments adjacent to underground tunnels using hybrid FEA-ANN technique

  • Jafarnia, Mohsen;Varzaghani, Mehdi Imani
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.757-768
    • /
    • 2016
  • In the past decades, effect of near field earthquake on the historical monuments has attracted the attention of researchers. So, many analyses in this regard have been presented. Tunnels as vital arteries play an important role in management after the earthquake crisis. However, digging tunnels and seismic effects of earthquake on the historical monuments have always been a challenge between engineers and historical supporters. So, in a case study, effect of near field earthquake on the historical monument was investigated. For this research, Finite Element Analysis (FEM) in soil environment and soil-structure interaction was used. In Plaxis 2D software, different accelerograms of near field earthquake were applied to the geometric definition. Analysis validations were performed based on the previous numerical studies. Creating a nonlinear relationship with space parameter, time, angular and numerical model outputs was of practical and critical importance. Hence, artificial Neural Network (ANN) was used and two linear layers and Tansig function were considered. Accuracy of the results was approved by the appropriate statistical test. Results of the study showed that buildings near and far from the tunnel had a special seismic behavior. Scattering of seismic waves on the underground tunnels on the adjacent buildings was influenced by their distance from the tunnel. Finally, a static test expressed optimal convergence of neural network and Plaxis.

Probabilistic sensitivity analysis of suspension bridges to near-fault ground motion

  • Cavdar, Ozlem
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.15-39
    • /
    • 2013
  • The sensitivities of a structural response due to variation of its design parameters are prerequisite in the majority of the algorithms used for fundamental problems in engineering as system uncertainties, identification and probabilistic assessments etc. The paper presents the concept of probabilistic sensitivity of suspension bridges with respect to near-fault ground motion. In near field earthquake ground motions, large amplitude spectral accelerations can occur at long periods where many suspension bridges have significant structural response modes. Two different types of suspension bridges, which are Bosporus and Humber bridges, are selected to investigate the near-fault ground motion effects on suspension bridges random response sensitivity analysis. The modulus of elasticity is selected as random design variable. Strong ground motion records of Kocaeli, Northridge and Erzincan earthquakes are selected for the analyses. The stochastic sensitivity displacements and internal forces are determined by using the stochastic sensitivity finite element method and Monte Carlo simulation method. The stochastic sensitivity displacements and responses obtained from the two different suspension bridges subjected to these near-fault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts stochastic sensitivity responses of suspension bridges. The stochastic sensitivity information provides a deeper insight into the structural design and it can be used as a basis for decision-making.

근접촉쌍성(NCBs)의 물리적 특성에 대한 통계적 분석 (STATISTICAL SURVEY FOR THE PHYSICAL CHARACTERISTIC OF NEAR CONTACT BINARY(NCBs))

  • 오규동
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권3호
    • /
    • pp.233-242
    • /
    • 2005
  • 66개의 근접촉쌍성(이하 NCBb)의 절대물리량과 궤도요소를 여러 목록으로부터 수집 분석하여 여러 물리량 사이의 상관관계와 NCBs의 물리적 특성을 조사하였다 NCBs의 질량비-광도비 관계는 $L_2/L_1{\lapprox}(M_2/M_1)^{1.45}$로 나타났으며 CE형에 더 근접한 특성을 보였다. NCBs의 여러 물리량 사이의 상관관계에 따르면 F형이 A형에 비하여 주성과 반성의 질량, 반경, 광도 및 온도의 차이가 작게 나타났다. NCBs의 H-R도에 따르면 A형이 F형에 비하여 다소 더 진화된 종년주계열(TAMS)에 가까이 나타나고 있다.

Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step

  • Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • 제12권6호
    • /
    • pp.595-617
    • /
    • 2013
  • Semi-active control equipments are used to effectually enhance the seismic behavior of structures. Magneto-rheological (MR) dampers are semi-active devices that can be utilized to control the response of structures during seismic loads and have received voracious attention for response suppression. They supply the adaptability of active devices and stability and reliability of passive devices. This paper presents an optimal fuzzy logic control scheme for vibration mitigation of buildings using magneto-rheological dampers subjected to near-fault ground motions. Near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction are considered in the requisite ground motion records. The membership functions and fuzzy rules of fuzzy controller were optimized by genetic algorithm (GA). Numerical study is performed to analyze the influences of near-fault ground motions on a building that is equipped with MR dampers. Considering the uncontrolled system response as the base line, the proposed method is scrutinized by analogy with that of a conventional maximum dissipation energy (MED) controller to accentuate the effectiveness of the fuzzy logic algorithm. Results reveal that the fuzzy logic controllers can efficiently improve the structural responses and MR dampers are quite promising for reducing seismic responses during near-fault earthquakes.

Seismic risk assessment of deficient reinforced concrete frames in near-fault regions

  • Cao, Vui Van;Ronagh, Hamid Reza;Baji, Hassan
    • Advances in concrete construction
    • /
    • 제2권4호
    • /
    • pp.261-280
    • /
    • 2014
  • In many parts of the world, reinforced concrete (RC) buildings, designed and built in accordance with older codes, have suffered severe damage or even collapse as a result of recent near-fault earthquakes. This is particularly due to the deficiencies of most of the older (and even some of the recent) codes in dealing with near fault events. In this study, a tested three-storey frame designed for gravity loads only was selected to represent those deficient buildings. Nonlinear time history analyses were performed, followed by damage assessment procedures. The results were compared with experimental observation of the same frame showing a good match. Damage and fragility analyses of the frame subjected to 204 pulse-type motions were then performed using a selected damage model and inter-storey drifts. The results showed that the frame located in near-fault regions is extremely vulnerable to ground motions. The results also showed that the damage model better captures the damage distribution in the frame than inter-storey drifts. The first storey was identified as the most fragile and the inner columns of the first storey suffered most damage as indicated by the damage index. The findings would be helpful in the decision making process prior to the strengthening of buildings in near-fault regions.

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Kartal, Murat Emre;Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.411-442
    • /
    • 2008
  • Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

로렌츠 상호작용 원리와 근역장-원역장 변환 공식을 이용한 안테나 근역장 측정 알고리즘 개선 (The Enhancement of Antenna Near-Field Measurements Using Near-Field to Far-Field Transform Algorithms Based on the Lorentz Reciprocity Theorem)

  • 조용희
    • 한국콘텐츠학회논문지
    • /
    • 제6권2호
    • /
    • pp.51-58
    • /
    • 2006
  • 안테나 복사 특성을 효과적으로 측정하는 방법 중 하나인 안테나 근역장 측정 알고리즘의 개선을 논한다. 로렌츠 상호작용 원리와 상호작용 표기법을 이용하여 근역장-원역장 변환공식의 핵심인 프로브 교정 알고리즘을 간략히 유도한다. 제안된 일반적인 프로브 교정 방정식과 제작된 시스템을 사각 혼안테나에 대한 평면주사법에 적용하여 근역장 복사 패턴을 얻고 이를 원역장 복사 패턴과 비교하여 복사 특성이 유사한 것을 보인다. 이를 통해 본 논문의 접근법이 매우 간단하면서도 대부분의 안테나 측정에 유용하게 쓰일 수 있는 것을 보인다.

  • PDF