• Title/Summary/Keyword: Nd-Fe-B permanent magnet

Search Result 112, Processing Time 0.031 seconds

Self-Shielding Magnetized vs. Shaped Parallel-Magnetized PM Brushless AC Motors

  • Pang Y.;Zhu Z. Q.;Howe D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.13-19
    • /
    • 2005
  • The performance of two designs of permanent magnet brushless motor, by having self-shielding magnetized magnets or sinusoidally shaped parallel-magnetized magnets with essentially sinusoidal airgap flux distributions, are compared. It is shown that the parallel-magnetized motor with shaped sintered NdFeB magnets can result in a higher airgap flux density and torque density than that of a self-shielding magnetized motor equipped with an anisotropic injection moulded NdFeB ring magnet.

Preparation of Al/Al2O3 Multilayer Coatings on NdFeB Permanent Magnet and their Corrosion Characteristics (NdFeB 영구자석에의 Al/Al2O3 다층막 코팅 및 부식 특성)

  • Jeong, J.I.;Yang, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • Various types of multilayer coatings including Al/$Al_2O_3$ structure have been prepared on Nd-Fe-B permanent magnet to modify the morphology of the coating and to enhance the corrosion resistance of the magnet. Magnetron sputtering has been employed to make the multilayer coatings. $Al_2O_3$sputtering conditions were optimized in reactive sputtering by varying the deposition parameters. The formation of $Al_2O_3$ film was confirmed from the binding energy shift measured by electron spectroscopy for chemical analysis. 3 types of coating structures were designed and prepared by magnetron sputtering. The coating structures consist of (1) single Al coating, (2) modified coatings having oxide or plasma treated layer in the middle of coating structure, and (3) Al/$Al_2O_3$ multilayer coatings. Surface and cross-sectional morphologies showed that Al/$Al_2O_3$ multilayer grew as a layered structure, and that very compact Zone 3 like structure were formed. X-ray diffraction peak showed that the crystal orientations of multilayer coatings were similar to that of the bulk powder pattern. Hardness increased drastically when the Al thickness was around 1im in the Al/$Al_2O_3$ multilayer. From the salt spray test and pressure cooker test, it has been shown that the multilayer coatings showed good corrosion resistance compared to Al single or modified layer coatings.

Dynamic Analysis of Line Start Permanent Magnet Motor Considering Magnetization (착자를 고려한 Line Start Permanent Magnet Mortor의 동특성 해석)

  • Lee, C.G.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.15-17
    • /
    • 2002
  • In this paper, we analyse the dynamic characteristic of 3-phase line start permanent magnet motor considering magnetization. Magnetization vector of NdFeB is obtained from the 2-D FEM magnetization analysis. And comparing the proposed analysis with conventional analysis method, we know that it is necessary to consider magnetization in dynamic analysis.

  • PDF

Influence of Post-Sintering Annealing Conditions on the Microstructure and Magnetic Properties of Nd-Fe-B Magnet (Nd-Fe-B 소결자석의 소결 후 열처리 조건에 따른 미세조직 및 자기적 특성 변화)

  • Yunjong Jung;Soonjik Hong;Dong-Hwan Kim;Kyoung-Hoon Bae;Gian Song
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2024
  • Nd-Fe-B permanent magnets have been utilized on various industrial fields such as electric vehicles, generator, robots with actuator, etc, due to their outstanding magnetic properties even 10 times better than conventional magnets. Recently, there are many researches that report magnetic properties improved by controlling microstructure through adjusting alloying elements or conducting various processing. Especially, post-sintering annealing (PSA) can significantly improve the coercivity by modifying the distribution and morphology of Nd-rich phase which formed at grain boundaries. In this study, Nd-Fe-B sintered magnets were subjected to primary heat treatment followed by secondary heat treatment at 460℃, 500℃, and 540℃ to investigate the changes in microstructure and magnetic properties with the secondary heat treatment temperature. EBSD analysis was conducted to compare anisotropic characteristics. Through the SEM and TEM observation for analyzing the morphology and distribution of Nd-rich phase, we investigated the relationship between microstructure and magnetic properties of sintered Nd-Fe-B magnets.

Strategic coating of NdFeB magnets with Dy to improve the coercivity of permanent magnets

  • Ucar, Huseyin;Parker, David S.;Nlebedim, I.C.;McCallum, R.W.;McCall, S.K.;Parans Paranthaman, M.
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.227-233
    • /
    • 2015
  • We present a method, supported by theoretical analysis, for optimizing the usage of the critical rare earth element dysprosium in $Nd_2Fe_{14}B$ (NdFeB)-based permanent magnets. In this method, we use Dy selectively in locations such as magnet edges and faces, where demagnetization factors are largest, rather than uniformly throughout the bulk sample. A200 nm thick Dy film was sputtered onto a commercial N-38, NdFeB magnets with a thickness of 3 mm and post-annealed at temperatures from $600-700^{\circ}C$. Magnets displayed enhanced coercivities after post-annealing and as much as a 5 % increase in the energy product, while requiring a total Dy content of 0.06 wt. % - a small fraction of that used in the commercial grade Dy-NdFeB magnets. By assuming all Dy diffused into NdFeB magnets, the improvement in energy product corresponds to a saving of over 1% Dy (critical element). Magnets manufactured using this technique will therefore be higher performing which would potentially broaden the application space of these magnets in the traction motors of hybrid and pure electric vehicles, and wind generators.

Magnetic Properties of NdFeB Permanent Magnets Fabricated by CAPA Process with Melt-spun Powder (급냉응고된 분말로부터 CAPA법으로 제조한 NdFeB 영구자석의 자기적 특성)

  • 김윤배;김형태;전우용;김학신
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.250-255
    • /
    • 2001
  • Magnetic properties of the isotropic and anisotropic NdFeB magnets obtained by the Current-Applied Pressure-Assisted (CAPA) process from a melt-spun NdFeB powder were investigated using B-H loop analyser. The coercivity of the isotropic magnets is sensitive to the applied pressure in the CA-pressing and increases with increasing the pressure. The remanence of the anisotropic magnet increases with increasing the degree of deformation, and it results in the increase of a maximum energy Product. The best magnetic Properies of the isotropic and anistropic magnet are B$\sub$r/= 8.7 kG, $\sub$i/H$\sub$c/= 16.9 kOe, (BH)$\sub$max/= 16.5 and B$\sub$r/= 13.6 kG, $\sub$i/H$\sub$c/= 10.9 kOe, (BH)$\sub$max/= 44.2 MGOe, respectively.

  • PDF

Coercivity Enhancement in Nd2Fe14B Permanent Magnetic Powders through Rotating Diffusion Process with DyHx Powders

  • Choi, Moon-Hee;Yu, Ji-Hun;Kim, Dong-Hwan;Kim, In-Bae;Kim, Yang-Do
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.342-349
    • /
    • 2011
  • [ $Nd_2Fe_{14}B$ ]permanent magnetic powders ($_iH_c$ = 9.2 kOe, $B_r$ = 12.2 kG) were produced by HDDR process. Their coercivity was enhanced to 12.6 kOe through the grain boundary diffusion process with dysprosium hydride ($DyH_x$). $DyH_x$ diffusion process was optimized through rotating diffusion process, resulting in distinct phases rich in Nd and Dy observable by field emission scanning microscopy and transmission electron microscopy. The mechanism of coercivity enhancement that resulted in restrain the coupling effect between $Nd_2Fe_{14}B$ grains is also discussed.

Electronic and Magnetic Properties of Rare-earth Permanent Magnet : $Nd_2Fe_{14}B$ ($Nd_2Fe_{14}B$ 희토류의 영구자석의 전자기적 물성연구)

  • Min, Byeong-Il;Jeong, Yun-Hui;Yang, Chung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.193-199
    • /
    • 1992
  • 희토류 영구자석, $Nd_2Fe_{14}B$ 화합물에 대한 자체충족적 국재밀도함수근사 전자 구조 계산을 수행하여 이 물질의 전자기적 물성을 연구하였다. LMTO(Linearized Muffin-Tin Orbital)에너지 띠 방법을 사용하여 상자성, 강자성상에서 구한 $Nd_2Fe_{14}B$ 화합물의 에너지 띠구조를 토대로 하여 자성을 포함한 제반 물성, 즉 희토류금속과 천이금속의 결합(bonding)효과, 전기적, 자기적 구조등을 고찰하였다. Boron 원자의 역학은 근접 Fe 원자와의 혼합 상호작용을 통하여 Fe의 원자의 자기모멘트를 많이 줄이는 효과를 주며 또한 구조 안정성에 기여한다는 결과를 얻었다. 강자성상에서의 Fe 원자들의 평균 자기모멘트는 약 2.15 ${\mu}B$로 계산되었는데 이중 Boron 원자로 부터 가장 멀리 떨어져 있으며 12개의 Fe 원자들로 둘러싸인 Fe(j2-site)원자가 가장 큰 값(2.7 ${\mu}B$)의 자기모멘트를 갖고 Boron 원자와의 혼합 상호작용이 가장 큰 Fe(e-site)원자가 가장 작은 값(1.9 ${\mu}B$)의 자기모멘트를 갖는다.

  • PDF