• Title/Summary/Keyword: Nd:yag laser

Search Result 1,019, Processing Time 0.031 seconds

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

Effect Of Variation Of Laser Wavelength OH Properties of ($Pb_{0.72}La_{0.28}$)$Ti_{0.93}O_{3}$Thin Films Fabricated by Pulsed Laser Deposition (펄스레이저 증착법으로 제작된 ($Pb_{0.72}La_{0.28}$)$Ti_{0.93}O_{3}$박막의 레이저 파장 변화에 따른 특성 연구)

  • 한경보;허창회;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.170-173
    • /
    • 2001
  • Thin films of phase-pure perovskite (P $b_{0.72}$L $a_{0.28}$) $Ti_{0.93}$ $O_3$(PLT) were deposited in-situ onto Pt/Ti/ $SiO_2$/Si substrates by pulsed laser deposition. We have systematically investigated the variation of grain sizes depending on the process condition. Both in-situ annealing and ex-situ annealing treatments have been compared depending on the annealing time. Two-step process to grow (P $b_{0.72}$L $a_{0.28}$) $Ti_{0.93}$ $O_3$(PLT) films was adopted and verified to be useful to enlarge the grain size of the film and to enhance the leakage current characteristics. The grain sizes of PLT thin films were successfully controlled 260 to 350 nm by changing process parameters. Electrical properties including dielectric constant, ferroelectric characteristics, crystallization and leakage current of PLT thin films were shown to be strongly inf1uenced by grain size. Also PLT thin films on p-type(100) Si substrate will be fabricated by pulsed laser deposition technique using a Nd:YAG laser with different wavelengths of 355, 532 and 1064 nm. Effect of the variation of laser wavelength on dielectric properties will be discussed. Microstructural and electrical properties of the film were investigated by C-V measurement leakage current measurement and SEM.ent and SEM.

  • PDF

Step Pulse Shaping Technique for Nd:YAG Laser Using a Multi-Switching Method

  • Kwak, Su-Young;Park, Jin-Young;Kim, Su-Weon;Min, Byoung-dae;Chung, Hyun-ju;Kim, Hee-je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.55-59
    • /
    • 2004
  • Throughout manufacturing processes, pulse shaping is required for material processing and it is regarded as an important (actor according to the specific characteristics of materials. Therefore, this study suggests a highly appropriate pulse shaping technique using a multi-switching method. This is a pulse superposition method in which one flash lamp can consecutively turn on by the double switching of the discharging system. It is possible to construct a variety of pulse shapes and pulse widths by the consecutive trigger of the silicon-controlled rectifiers (SCR) of a PIC (program integrated circuit) one-chip microprocessor. The use of this technique can provide a number of advantages to people who require suitable pulse shaping for particular applications such as welding, cutting, and drilling.

UV emission characterization of ZnO thin films depending on the variation of oxygen pressure (분위기 산소압변화에 따른 ZnO박막의 UV발광 특성분석)

  • Bae, Sang-Hyuck;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1523-1525
    • /
    • 1999
  • ZnO is a wide-bandgap II-VI semiconductor and has a variety of potential application. ZnO exhibits good piezoelectric, photoelectric and optic properties, and is good for a electroluminescence device. ZnO films have been deposited at (0001) shappire by PLD technique. Chamber was evacuated by turbomolecular pump to a base pressure of $1{\times}10^{-6}$ Torr Nd:YAG pulsed laser was operated at ${\lambda}=355nm$. The ZnO films were deposited at oxygen pressures from base to 500 mTorr. The substrate temperatures was increased from $200^{\circ}C$ to $700^{\circ}C$. At aleady works, UV emission and green-yellow PL was observed. In this work, ZnO films showed UV, violet, green and yellow emissions. UV emission was enhanced by increasing partial oxygen pressure. We investigated relationship between partial oxygen pressure and UV emission.

  • PDF

SHG properties of MgO-doped $LiNbO_3$ single crystals

  • Lee, Jong-Soo;Kim, Chong-Don;Joo, Gi-Tae;Rhee, Bum-Ku
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.163-170
    • /
    • 1997
  • The MgO-doped LiNbO$_3$ single crystals were grown along c-axis by the Czochralski method with the pulling rate of 3mm/h and the rotation of 10rpm. The MgO contents were form 1 to 4 mole%. The SHG properties were investigated with the pulsed Nd:YAG laser, and thermo-optic coefficient, electro-optic coefficient of birefringence and curie temperature were measured. Phase matching temperature and Curie temperature increase similarly with MgO content until 4 mole%.

  • PDF

Spray Characteristics of the Rotary Atomizer for the Slinger Combustor (슬링거 연소기의 회전형 분사장치의 분무특성 연구)

  • Choi, Hyun-Kyung;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2008
  • An experimental study was performed to understand spray characteristics of the rotary atomizer for the slinger combustor. In this fuel injection system, fuel is injected and atomized in the combustor by centrifugal forces to engine shaft. The experimental apparatus consists of a high speed rotational spindle, rotary atomizer, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA (phase Doppler particle analyzer), and spray was visualized by using high speed camera and Nd:Yag laser-based flash photography. From the test results, the droplet size (SMD) is largely affected by rotational speed, mass flow rate and the number of orifice. As the experimental results, we could understand the spray characteristics of the rotary atomizer for the slinger combustor and obtain the optimum shape of the rotary atomizer which is suitable for the small gas turbine engine.

  • PDF

PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel Junction (T헝 마이크로채널 연결부 압력구동 유동의 PIV계측)

  • Choi Jayho;Lee In-Seop
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • A custom micro-PIV optics assembly has been used to measure the flow fold inside a T-junction of a microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620 nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of 2.0, 4.0, 6.0 mL/hr. The micro-channels are fabricated with PDMS with a silicon mold, then O$_{2}$ -ion bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results include PIV data with vector-to-vector distances of 2 $\mu$m with 32 pixel-square interrogation windows at 50$\%$ overlap.

  • PDF

Characteristics of Particle Laden Flows in Circular Microchannels (원형 마이크로채널 내의 입자가 부유된 유동의 특성)

  • Kim Y.W.;Jin S.W.;Yoo J.Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.85-88
    • /
    • 2005
  • Experimental study has been conducted to evaluate characteristics of particle laden flows at the ratio of channel diameter to particle diameter (B = 14.9, 21.6 and 55). Particle velocities and radial concentrations are obtained using a microscope Nd:YAG laser and cooled CCD camera. Results show that there are relative velocities between the fluid and the particles at B = 14.9. It is also observed that the particles are accumulated at r=$0.5\∼0.82R$, with R being tile tube radius, and particle migration occurs at small Reynolds number, by comparing with the results obtained in macro scale. This gives optimal factors for designing microfluidic channels for cell or Particle separation, particle focusing, and so on.

  • PDF

Study on control of orientation of multicomponent thin film by laser ablation (레이저 어블레이션에 의한 다성분 박막의 방향성 제어 연구)

  • Park, Joo-Hyung;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1226-1228
    • /
    • 1997
  • 펄스 레이저 증착법을 이용하여 MgO 기판 위에 YBCO 박막을 c 축으로 성장시켰다. 이를 위하여 다양한 두께의 YBCO 박막을 여러 온도에서 증착시킴으로서 두께와 온도에 따른 YBCO 박막의 방향성을 조사하였다. 레이저원으로는 Nd:YAG 레이저의 355 nm의 파장을 이용하였으며, 증착시 기판온도는 $700^{\circ}C$$750^{\circ}C$에서 박막의 두께를 $3,000{\AA}$, $10,000{\AA}$, $20,000{\AA}$ 등으로 변화시켜 증착하였다. 이렇게 증착되어진 박막의 표면은 SEM으로 관촬되어졌으며, Raman Spectrascopy로 박막을 분석하였고, XRD를 사용하여 그 박막의 배향성을 연구하였다. 본 논문에서는 이와 같은 분석과 연구를 통하여 증착되어진 다성분 박막의 배향성이 기판온도와 박막두께에 따라 민감하게 변화함을 체계적으로 분석하였으며, 그 결과 기판온도와 박막 두께에 따른 YBCO 박막의 a 축, c 축 성장의 의존성을 확인하였다.

  • PDF

Visualization of Electro-osmotic Flow Instability in a T-shape Microchannel (T자형 마이크로 채널 내부 전기삼투 유동의 불안정성 가시화)

  • Han, Su-Dong;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • Electro-osmotic flow (EOF) instability in a microchannel has been experimentally investigated using a micro-PIV system. The micro-PIV system consisting of a two-head Nd:Yag laser and cooled CCD camera was used to measure instantaneous velocity fields and vorticity contours of the EOF instability in a T-shape glass microchannel. The electrokinetic flow instability occurs in the presence of electric conductivity gradients. Charge accumulation at the interface of conductivity gradients leads to electric body forces, driving the coupled flow and electric field into an unstable dynamics. The threshold electric field above which the flow becomes unstable and rapid mixing occurs is about 1000V/cm. As the electric field increases, the flow pattern becomes unstable and vortical motion is enhanced. This kind of instability is a key factor limiting the robust performance of complex electrokinetic bio-analytical devices, but can also be used for rapid mixing and effective flow control fer micro-scale bio-chips.

  • PDF