• Title/Summary/Keyword: Nb-doped $BaTiO_3$

Search Result 33, Processing Time 0.023 seconds

Effects of Nb5+ Addition on Microstructure and Dielectric Properties of BaTiO3

  • Kim, Yeon Jung;Hyun, June Won
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.143-147
    • /
    • 2017
  • Structural studies on the addition characteristics of Nb ions to $BaTiO_3$ solid solutions were performed by XRD and SEM/EDS technique. The X-ray diffraction peaks of the (111), (200) and (002) planes of Nb-doped $BaTiO_3$ solid solutions with different mole% of Nb were analyzed. We also investigated the relationship between the dielectric and structural properties of Nb-doped $BaTiO_3$. The transition temperatures of $BaTiO_3$ solid solution doped with 0.5mole%Nb and 1.0 mole%Nb were ${\sim}116^{\circ}C$ and ${\sim}87^{\circ}C$, respectively, which were found to be shifted to very low temperature from the transition temperature of pure $BaTiO_3$ (about $125^{\circ}C$). As a result of analysis of 1/K versus T and ln[$(1/K)-(1/K_m)$ versus ($T-T_m$)] of the two compositions used in this experiment, the diffusivity slightly differs from that of pure $BaTiO_3$ at temperatures above Curie temperature. And this characteristic was analyzed by applying the modified Curie-Weiss law.

PTCR Effects In Nb2O5 Doped BaTiO3 Ceramics Prepared By Molten Salt Synthesis Method (용융염합성법에 의한 Nb2O5 첨가 BaTiO3의 PTCR 효과)

  • 윤기현;정해원;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.579-585
    • /
    • 1987
  • The effects of flux KCl and dopant Nb2O5 on the PTCR characteristics of BaTiO3 prepared by molten salt synthesis method have been investigated. As the amount of dopant Nb2O5 is over the solubility limit in BaTiO3, the room-temperature resistivity increases, and the PTCR effect and the grain size decrease. The variation of the amount of flux KCl slightly influences on the room-temperature resistivity, PTCR effect and grain size in Nb2O5 doped BaTiO3, but BaTiO3 ceramics prepared by the method of molten salt synthesis show larger PTCR effect than those of conventional calcining of mixed oxides.

  • PDF

Fabrication of $BaTiO_3-PTCR$ Ceramic Resister Prepared by Direct Wet Process (습식 직접합성법을 이용한 PTCR 소자개발 연구)

  • 이경희;이병하;이희승
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.61-65
    • /
    • 1985
  • $BaTiO_3$ powders doped with $BaTiO_3$ and $Nb_2O_5$ at 9$0^{\circ}C$ for 1hr. were synthesized by Direct Wet Process. These powders were very homogeneous and fine particle size. To obtain the highe PTCR effect AST($1/3Al_2O_3$.$3/4SiO_2$.$1/4TiO_2$) and $MnO_2$ were added in the semiconduc-ting $BaTiO_3$. In this case $Bi_2O_3$ and $MnO_2$ were used in the form of $Bi(NO)_3$ and $MnCl_2$.$4H_2O$ solution for Direct Wet Process. $BaTiO_3$ doped Nb2O5 and $MnO_2$ demostrated greater PTCR effect than $BaTiO_3$ doped $Nn_2O_5$ only.

  • PDF

Temperature Dependence of Dielectric Properties of BaTiO$_3$ doped with Nb$_2$O$_5$ and CoO (Nb$_2$O$_5$와 CoO의 복합첨가가 BaTiO$_3$ 유전특성의 온도안전성에 미치는 효과)

  • 최광휘;황진현;한영호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.864-870
    • /
    • 1998
  • The effect of {{{{ {{Nb }_{2 }O }_{5 } }} and CoO addition on the temperature dependence of the {{{{ {BaTiO }_{3 } }}-based ceramic capa-citor has been studied. X7R with moderate temperature dependence has been developed by means of pre-cisely controlled {{{{ {{Nb }_{2 }O }_{5 } }}/CoO ratio. Dielectric constant(K) and dissipation factor(DF) were 3500 and 1.5% respectively. As the content of {{{{ {{Nb }_{2 }O }_{5 } }} was increased the curie temperature(Tc) was shifted to lower tem-perature and the dielectric constant at Tc was decreased. The proper addition of CoO with {{{{ {{Nb }_{2 }O }_{5 } }} improved the temperature dependence of dielectric properties of the {{{{ {BaTiO }_{3 } }}-based ceramic capacitor.

  • PDF

Defect Chemistry of BaTiO_3$ Codoped with Mn and Nb

  • Han, Young-Ho;Shin, Dong-Jin
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.68-71
    • /
    • 1998
  • The effect of Mn and Nb additions on the electrical properties of BaTiO$_3$ has been studied by means of equilibrium electrical conductivity as a function of temperature, oxygen partial pressure(Po$_2$) and composition. If the manganese ion is added to the normal Ti site, i.e. BaTi$_{1-x}Mn_xO_{\delta-6}$, the equilibrium conductivity shows strong evidence of acceptor-doped behavior. The conductivity minimum, corresponding to the transition from oxygen excess, p-type behavior to oxygen deficient, n-type behavior with decreasing Po$_2$, is displaced to lower Po$_2$ and is broadened and flattened. The partial replacement of Mn ion with Nb decreases the acceptor-doped effect and the total replacement exhibits a typical donor-doped behavior. It was confirmed that unlike undoped or other acceptor-doped behavior. It was confirmed that unlike undoped or other acceptor-doped samples, for the p-type region, the electrical conductivity follows the 1/6th power dependence of oxygen partial pressure.

  • PDF

Effect of Heat Treatments on the PTCR of $BaTiO_3$ Ceramics Doped by $Nb^{+5}$ ($Nb^{+5}$ Doped $BaTiO_3$ 계에서 열처리가 PTCR 현상에 미치는 영향)

  • 문영우;정형진;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.54-60
    • /
    • 1985
  • This study is concerned with the mechanism of PTCR in $BaTiO_3$ ceramics doped by $Nb^{+5}$ Since the vacancy compensation layer at the grain boundary of n-type doped $BaTiO_3$ ceramics has been known as a major factor for surface state to give PTCR phenomena the dependence of PTCR on such vacancy compensation layer was attemped to be confirmed experimentally in this study. For the experiment quenching and annealing at various temperature after sintering were adopted to induce difference in the thickness of vacancycompensation layer so as to exihibit difference of PTCReffect eachother. The TEX>$Ba^{++}$ cocentration at the grain and grain boundary was measured by EDAX to confirm the formation of the vacancy compensation layer. It was found that i)either decrease in the temperature for quenching ii) or increase in the temperature for annealing improves the PTCR effect clearly iii)increase in TEX>$Ba^{++}$ concentration at the grain boundary results in the improvement of PTCR effect. It was concluded that all the experimental results gave the evidence for the dependence of PTCR effect on the vacancy compensation layer at the grain boundary which had been induced possibly by the $Ba^{++}$ diffusion by the heat treatment conducted.

  • PDF

Microstructural Characterization and Dielectric Properties of Barium Titanate Solid Solutions with Donor Dopants

  • Kim, Yeon-Jung;Hyun, June-Won;Kim, Hee-Soo;Lee, Joo-Ho;Yun, Mi-Young;Noh, S.J.;Ahn, Yong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1267-1273
    • /
    • 2009
  • The correlation between the sintering temperature and dielectric properties in the $Nb^{5+}\;and\;Ta^{5+}$ doped BaTi$O_3$ solid solutions have been investigated. The samples were sintered at temperatures ranging from 1250 to 1350 ${^{\circ}C}$ for 4 h in air. SEM, XRD and SEM/EDS techniques were used to examine the structure of the samples with particular focus on the incorporation of $Nb^{5+}\;and\;Ta^{5+}$ ions into the BaTi$O_3$ crystal lattice. The X-ray diffraction peaks of (111), (200) and (002) planes of BaTi$O_3$ solid solution doped with different fractions of $Nb^{5+}\;and\;Ta^{5+}$ were investigated. The dielectric properties were analyzed and the relationship between the properties and structure of doped BaTi$O_3$ was established. The fine-grain and high density of the doped BaTi$O_3$ ceramics resulted in excellent dielectric properties. The dielectric properties of this solid solutions were improved by adding a small amount of dopants. The transition temperature of the 1.0 mole% $Ta^{5+}$ doped BaTi$O_3$ solid solution was $\sim$110 ${^{\circ}C}$ with a dielectric constant of 3000 at room temperature. At temperatures above the Curie temperatures, the dielectric constant followed the Curie-Weiss law.

Complex Impedance Analysis of Nb-Doped Barium Titanate Ceramics (Nb이 첨가된 $BaTiO_3$ 세라믹스의 복소 임피던스 해석)

  • 조경호;남효덕;이희영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1012-1220
    • /
    • 1994
  • BaTiO3 ceramics doped with 0.1 to 4.0 mol% Nb2O5 were prepared by conventional solid stage sintering process, so as to investigate the effect of the amount of Nb2O5 on the dielectric properties and complex impedance patterns of barium titanates. From the measurement of capacitance, we found that the dielectric constant of BaTiO3 samples with 1 mol% or more Nb2O5 remained approximately constant around room temperature with values higher than 2500. In this paper, the effect of impurity content as well as temperature on complex impedance patterns was discussed in detail. In particular, the grain and grain boundary behavior of samples which showed PTCR characteristics was discussed in terms of measuring temperature.

  • PDF

Effect of MoO3 Addition and Their Frequency Characteristics in Nb+5 doped Semiconductive BaTiO3 Ceramics (Nb+5첨가된 반도성 BaTiO3세라믹스에서 MoO3의 영향과 주파수 특성)

  • 윤상옥;정형진;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 1987
  • Effect of MoO3 additiion on the semiconductive BaTiO3 ceramics doped with 0.2 mole% Nb2O5 and their frequency characteristics have been investigated on the view of intergranular barrier layer model through the observation of changes in their electrical properties. The resistivity increases with the increase of MoO3 addition, but the capacitance, the frequency dependence of capacitance and the effect of positive temperature coefficient of resistivity (PTCR) decrease. It is explained by the possible increase in the thickness of potential barrier due to the formation of insulating layer and thus decrease in the degree of energy band bending. Both the PTCR effect and resistivity decrease with the increase of frequency due to the possible elimination of barrier layer at the grain boundary.

  • PDF