• 제목/요약/키워드: Nb-Ti alloys

검색결과 133건 처리시간 0.02초

Inconel 718의 국부 부식 저항성에 미치는 용체화 열처리의 영향 (Effect of Solution Annealing Heat Treatment on the Localized Corrosion Resistance of Inconel 718)

  • 이윤화;이준섭;권순일;신정호;이재현
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.359-367
    • /
    • 2023
  • The localized corrosion resistance of the Ni-based Inconel 718 alloy after solution heat treatment was evaluated using electrochemical techniques in a solution of 25 wt% NaCl and 0.5 wt% acetic acid. Solution heat treatment at 1050 ℃ for 2.5 hours resulted in an increased average grain diameter. Both Ti carbides (10 ㎛ diameter) and Nb-Mo carbides (1 - 9 ㎛ diameter) were distributed throughout the material. Despite heat treatment, the shape and composition of these carbides remained consistent. An increase in solution temperature led to a decrease in pitting potential value. However, the pitting potential value of solution heat-treated Inconel 718 was consistently higher than that of as-received Inconel 718 at all tested temperatures. Localized corrosion initiation occurred at 0.4 VSSE in a temperature environment of 80 ℃ for both as-received and solution heat-treated Inconel 718 alloys. X-ray photoelectron spectroscopic analysis indicated that the composition of the passive film formed on specimen surfaces remained largely unchanged after solution heat treatment, with O1s, Cr2p3/2, Fe2p3/2, and Ni2p3/2 present. The difference in localized corrosion resistance between as-received and solution heat-treated Inconel 718 alloys was attributable to microstructural changes induced by the heat treatment process.

Localized Corrosion Resistance and Microstructural Changes in UNS N07718 Alloy After Solution Heat Treatment

  • Yoon-Hwa Lee;Jun-Seob Lee;Soon il Kwon;Jungho Shin;Je-Hyun Lee
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.166-178
    • /
    • 2024
  • The localized corrosion resistance of UNS N07718 alloy was investigated after solution heat treatment. When the alloy was heat-treated at 1050 ℃ for 2.5 hours, it experienced an increase in average grain diameter, a reduction in grain boundary area, and the dissolution of delta phases along grain boundaries. Additionally, primary metallic nitrides (MN) and metallic carbides (MC), enriched with either Ti or Nb, were identified and exhibited a random distribution within the microstructures. Despite the solution heat treatment, the composition, diameter, and abundance of MNs and MCs remained relatively consistent. The critical pitting temperature (CPT), as determined by the ASTM G48-C immersion test, revealed similar values of 45 ℃ for both treated and untreated alloys. However, a decrease in maximum pit depth and corrosion rate was observed after the solution heat treatment. The microstructural changes that occurred during the heat treatment and their potential implications were discussed to understand the influence of the solution heat treatment.

$\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성 (Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys)

  • 국진선;전우용;진영철;김상협
    • 한국재료학회지
    • /
    • 제7권3호
    • /
    • pp.218-223
    • /
    • 1997
  • 과냉각액체구역(${\Delta}T_{x}=T_{x}-T_{g}$)을 갖는 $Fe_{80}P_{10}C_{6}B_{4}$ 조성에 천이금속(Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Pd, Pt및 Cu)를 첨가하여 이들 원소가 유리화온도($T_{g}$), 결정화온도($T_{x}$) 및 과냉액체구역 (${\Delta}T_{x}$)에 미치는 영향에 \ulcorner여 조사하였다. $Fe_{80}P_{10}C_{6}B_{4}$ 합금의 ${\Delta}T_{x}$ 값은 27K였으나 이 합금에 Hf, Ta 및 Mo을 각각 4at%첨가하면 그 값이 40k 이상으로 증가하였다. 이같은 ${\Delta}T_{x}$ 값의 증가는 유리화온도($T_{g}$의 상승보다 결정화온도($T_{x}$)의 상승폭이 크기 때문이다. $T_{g}$$T_{x}$는 외각전자밀도(e/a)가 약 7.38에서 7.05로 감소할수록 상승하였다. e/a의 감소는 천이금속과 다른 구성원소(반금속)사이의 상호결합상태를 의미한다. 즉 $T_{g}$$T_{x}$의 상승은 강한 상호결합력에 기인하는 것으로 사료된다.

  • PDF