• Title/Summary/Keyword: Nb doping Leakage current

Search Result 5, Processing Time 0.02 seconds

Leakage Current of Capacitive BST Thin Films (BST 축전박막의 누설전류 평가)

  • 인태경;안건호;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.803-810
    • /
    • 1997
  • Ba0.5Sr0.5TiO3 thin films were deposited by RF magnetron sputliring method in order to clarify the anneal condition and doping effect on loakage current Nb and Al were selected as electron donor and acceptor dopants respectively, in the BST films because they have been known to have nearly same ionic radii as Ti and thought to substitute Ti sites to influence the charge carrier and the acceptor state adjacent to the gram boundary. BST thin films prepared in-situ at elevated temperature showed selatively high leakage current density and low breakdown voltage. In order to achieve smooth surface and to improve electrical properties, BST thin films were deposited at room temperature and annealed at elevated temperature. Post-annealed BST thin films showed smoother surface morphology and lower leakage current density than in-situ prepared thin films. The leakage current density of Al doped thin films was measured to be around 10-8A/cm2, which is much lower than those of undoped and Nb doped BST films. The result clearly demonstrates that higher Schottky barrier and lower mobile charge carrier concentration achieved by annealing in the oxygen atmosphere and by Al doping are desirable for reducing leakage current density in BST thin films.

  • PDF

Dielectric and Electric Properties of Nb Doped PZT Thin Films by Sol-gel Technique (솔-젤법으로 제조한 PZT 박막의 Nb 첨가에 따른 유전 및 전기적 특성)

  • 김창욱;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1101-1108
    • /
    • 1996
  • No-doped PZT thin films have been fabricated on Pt/Ti/SiO2/Si substrate using Sol-Gel technique. A fast annealing metho (three times of intermediate and final annealing) was used for the preparation of multi-coated 1800$\AA$ thick Nb-doped PZT thin films. As Nb doping percent was increased leakage current was lowered approximately 2 order but dielectic properties were degraded due to the appearance of pyrochlore phase and domain pinning. Futhermore the increase of the final annealing temperature up to 74$0^{\circ}C$lowered the pyrochlore phase content resulting in enhancing the dielectric properties of the Nb doped films. The 3%-Nb doped PZT thin films with 5% excess Pb showed a capacitance density of 24.04 fF/${\mu}{\textrm}{m}$2 a dielectric loss of 0.13 a switchable polarization of 15.84 $\mu$C/cm2 and a coercive field of 32.7 kV/cm respectively. The leakage current density of the film was as low as 1.47$\times$10-7 A/cm2 at the applied voltage of 1.5 V.

  • PDF

Investigation of Nb-Zr-O Thin Film using Sol-gel Coating

  • Kim, Joonam;Haga, Ken-ichi;Tokumitsu, Eisuke
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • Niobium doped zirconium oxide (Nb-Zr-O:NZO) thin films were fabricated on Si substrates by a sol-gel technique with an annealing temperatures of $500{\sim}1000^{\circ}C$ in air ($N_2:O_2=3:1$) for 20 minutes. It was found that the NZO film is based on tetragonal $ZrO_2$ polycrystalline structure with the Nb 5+ ion state and there is almost no diffusion of Nb or Zr to Si substrate. The relative dielectric constant for the NZO film with the Nb composition of 30 mol% and annealed at $800^{\circ}C$ was around 40. The root mean roughness was 1.02 nm. In addition, the leakage current of NZO films was as low as $10^{-6}A/cm^2$ at 4.4 V.

Microstructures and Electrical Properties of Niobium-doped Bi4Ti3O12 Thin Films Fabricated by a Sol-gel Route (졸-겔 법으로 성장시킨 Nb가 첨가된 Bi4Ti3O12 박막의 미세구조와 전기적 성질)

  • Kim, Sang-Su;Jang, Ki-Wan;Han, Chang-Hee;Lee, Ho-Sueb;Kim, Won-Jeong;Choi, Eun-Kyung;Park, Mun-Heum
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.317-322
    • /
    • 2003
  • Bismuth layered structure ferroelectric thin films, $Bi_4$$Ti_3$$O_{12}$ / (BTO) and Nb-doped BTO (BTN) were prepared on the Pt(111)/Ti/$SiO_2$/Si(100) substrates by a sol-gel route. We investigated the Nb-doping effect on the grain orientation and ferroelectric properties. $Nb^{5+}$ ion substitution for $Ti^{4+}$ ion in perovskite layers of BTO decreased the degree of c-axis orientation and increased the remanent polarization (2Pr). The fatigue resistance of Nb-doped BTO thin film was shown to be superior to that of BTO, and the leakage current of Nb-doped BTO thin film was decreased about 1 order of magnitude compared with BTO. The improvement of ferroelectric properties with $Nb^{5+}$ doping in BTO could be attributed to the changes in space charge densities and grain orientation in the thin film.

Characterization of Structure and Electrical Properties of $TiO_2$Thin Films Deposited by MOCVD (화학기상증착법에 의한$TiO_2$박막의 구조 및 전기적 특성에 관한 연구)

  • Choe, Sang-Jun;Lee, Yong-Ui;Jo, Hae-Seok;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • $(TiO_{2})$ thin films were deposited on p-Si(100) substrate by APMOCVD using titanium isopropoxide as a source material. The deposition mechanism was well explained by the simple boundary layer theory and the apparent activation energy of the chemical reaction controlled process was 18.2kcal /mol. The asdeposited films were polycrystalline anatase phase and were transformed into rutile phase after postannealing. The postannealing time and the film thikness as well as the postannealing temperature also affected the phase transition. The C-V plot exhibited typical charateristics of MOS diode, from which the dielectric constant of about 80 was obtained. The capacitance of the annealed film was decreased but those of the Nb or Sr doped films were not changed. I-V characteristics revealed that the conduction mechanism was hopping conduction. The postannealing and the doping of Nb or Sr cause to decrease the leakage current and to increase the breakdown voltage.

  • PDF