• Title/Summary/Keyword: Navigation in Adverse Weather

Search Result 6, Processing Time 0.016 seconds

Build a Multi-Sensor Dataset for Autonomous Driving in Adverse Weather Conditions (열악한 환경에서의 자율주행을 위한 다중센서 데이터셋 구축)

  • Sim, Sungdae;Min, Jihong;Ahn, Seongyong;Lee, Jongwoo;Lee, Jung Suk;Bae, Gwangtak;Kim, Byungjun;Seo, Junwon;Choe, Tok Son
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.245-254
    • /
    • 2022
  • Sensor dataset for autonomous driving is one of the essential components as the deep learning approaches are widely used. However, most driving datasets are focused on typical environments such as sunny or cloudy. In addition, most datasets deal with color images and lidar. In this paper, we propose a driving dataset with multi-spectral images and lidar in adverse weather conditions such as snowy, rainy, smoky, and dusty. The proposed data acquisition system has 4 types of cameras (color, near-infrared, shortwave, thermal), 1 lidar, 2 radars, and a navigation sensor. Our dataset is the first dataset that handles multi-spectral cameras in adverse weather conditions. The Proposed dataset is annotated as 2D semantic labels, 3D semantic labels, and 2D/3D bounding boxes. Many tasks are available on our dataset, for example, object detection and driveable region detection. We also present some experimental results on the adverse weather dataset.

A Study on the Minimum Engine Propulsion Power Required for Safe Navigation of Small and Medium Ships (중소형 선박의 안전항해를 위한 주기관 최소출력에 관한 연구)

  • Kang, Suk-Young;Ahn, Young-Joong;Kim, Seung-Yeon;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.415-420
    • /
    • 2018
  • The Energy Efficiency Design Index (EEDI) introduced by the Marine Environment P rotection Committee(MEPC) in International Maritime Organization(IMO) has significantly assisted in regulating CO2 emissions. However, in adverse weather conditions, it can lead to accidents due to slow steaming of vessels and low engine propulsion power. In response to this issue, the MEPC presented guidelines for the minimum propulsion power of the main engine for maintaining the course of vessels in adverse weather conditions. However, the guidelines are only applicable for vessels with a deadweight of 20,000 tons, leaving out small and medium ships. This study evaluated vessels subject to the guidelines of minimum propulsion power and proposed revised guidelines. In addition, relevant cases of marine accidents were investigated with the aim of investigating the minimum propulsion power of main engine for medium and small ships not covered by the guidelines. In order to achieve this, engine propulsion power was analyzed according to the size of the affected vessels. The results obtained from this study could be used as a minimum power criterion that can be considered for ship building to reduce marine accidents in adverse weather for small and medium ships.

A Study of Missile Guidance Performance Enhancement using Multi-sensor Data Fusion in a Cluttered Environment (클러터 환경에서 다중센서 정보융합을 통한 유도성능 개선 연구)

  • Han, Du-Hee;Kim, Hyoung-Won;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.177-187
    • /
    • 2010
  • A MTG (Multimode Tracking and Guidance) system is employed to compensate for the limitations of individual seekers such as RF (Radio frequency) or IIR (Imaging Infra-red) and to improve the overall tracking and guidance performance in jamming, clutter, and adverse weather environments. In the MTG system, tracking filter, data association, and data fusion methods are important elements to maximize the effectiveness of precision homing missile guidance. This paper proposes the formulation of a Kalman filter for the estimation of line-of-sight rate from seeker measurements in missiles guided by proportional navigation. Also, we suggest the HPDA (Highest Probability Data Association) and data fusion methods of the MTG system for target tracking in the adverse environments. Mont-Carlo simulation is employed to evaluate the overall tracking performance and guidance accuracy.

Development of Solution for Safety and Optimal Weather Routing of a Ship

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Mai, Thi Loan;Nguyen, Tien Thua;Vo, Anh Hoa;Seo, Ju-Won;Yoon, Gyeong-Hwan;Yoon, Hyeon-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.318-320
    • /
    • 2018
  • When a ship sails on sea, it may be influenced by the environmental disturbance such as wind, wave, sea surface temperature, etc. These affect on the ship's speed, fuel consumption, safety and operating performance. It is necessary to find the optimal weather route of a ship to avoid adverse weather conditions which can put the crews in serious danger or cause structural damage to the vessel, machinery, and equipment. This study introduced how to apply A* algorithm based on sea trial test data for determining the optimal ship routes. The path cost function was modelled as a function of minimum arrival time or minimum energy depending on the time of various environment conditions. The specially modelled path-cost function and the safety constraints were applied to the A* algorithm in order to find the optimal path of the ship. The comparison of ship performances estimated by real sea trial's path and estimated optimal route during the voyage of the ship was investigated. The result of this study can be used to create a schedule to ensure safe operation of the ship with short passage time or minimum energy. In addition, the result of this study can be integrated into an on-board decision supporting expert system and displayed in Electronic Chart Display and Information System (ECDIS) to provide all the useful information to ship master.

  • PDF

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.

Precautionary Principle for the Protection of Space Environment against Solar Electromagnetic Storm (우주전파재난과 우주법상의 사전주의 원칙에 관한 연구)

  • Shin, Hong-Kyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.26 no.1
    • /
    • pp.241-269
    • /
    • 2011
  • Solar flare and storm may give an adverse effect upon electromagnetic environment around the Earth, so that various kinds of satellite cease to normally function. This kind of space storm disaster is characterized by the uncertainty about when and what size. Recently the UN has been paying attention to this plausible disaster. Particularly the COPUOS has taken the view that this disaster would threaten the sustainable space environment. The precautionary principle, rooted and excercised in the environment protection filed, has been adopted in the case of disaster with uncertainty. The reports and opinions given by the expert and representatives of the member States have stated that the precautionary principle should be adopted for the purpose of dealing with this disaster. On the other hand, it is advanced that the principle has been already included in the space law principle enshrined in the 1967 Space Treaty. The Treaty has adopted the freedom of navigation and use of the outer space for the interest of all States as the basic principles. Sustainable environment is necessary for implementing the principle. Therefore, the rules for the protection of sustainable space environment should be based upon the space law principle.

  • PDF