• Title/Summary/Keyword: Navigation Potential Field

Search Result 57, Processing Time 0.02 seconds

Formation Motion Control for Swarm Robots (군집 로봇의 포메이션 이동 제어)

  • La, Byoung-Ho;Kim, Sung-Ho;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2147-2151
    • /
    • 2011
  • In this paper, we propose the formation control algorithm for swarm robots. The proposed algorithm uses the artificial potential field(APF) to plan the global path of swarm robots and to control the formation movement. The navigation function generates a global APF for a leader robot to reach a given destination and an avoidance function generates a local APF for follow robots to avoid obstacles. Finally, some simulations show the validity of the proposed method.

Analysis of density diffusion analysis by Fick's laws in the human body (픽법에 의한 생체 내의 농도 확산 분석)

  • Che, Gyu-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.657-664
    • /
    • 2012
  • One of the methods to transmit solute through solvent is diffusion. Various particles or molecules including several charged ions in the body diffuse from high density region to low density due to density difference or external electric field. This kind of mechanism is due to thermal motion of each solute molecules. These situations can be deployed using Fick's first and second laws that govern diffusion phenomena in the body. I analysis these diffusion status of material in the body using above mentioned Fick's laws and then implement them through illustration.

Cluster Robots Line formatted Navigation Based on Virtual Hill and Virtual Sink (Virtual Hill 및 Sink 개념 기반의 군집 로봇의 직선 대형 주행 기법)

  • Kang, Yo-Hwan;Lee, Min-Cheol;Kim, Chi-Yen;Yoon, Sung-Min;Noh, Chi-Bum
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.237-246
    • /
    • 2011
  • Robots have been used in many fields due to its performance improvement and variety of its functionality, to the extent which robots can replace human tasks. Individual feature and better performance of robots are expected and required to be created. As their performances and functions have increased, systems have gotten more complicated. Multi mobile robots can perform complex tasks with simple robot system and algorithm. But multi mobile robots face much more complex driving problem than singular driving. To solve the problem, in this study, driving algorithm based on the energy method is applied to the individual robot in a group. This makes a cluster be in a formation automatically and suggests a cluster the automatic driving method so that they stably arrive at the target. The energy method mentioned above is applying attractive force and repulsive force to a special target, other robots or obstacles. This creates the potential energy, and the robot is controlled to drive in the direction of decreasing energy, which basically satisfies lyapunov function. Through this method, a cluster robot is able to create a formation and stably arrives at its target.

Collision Prediction based Genetic Network Programming-Reinforcement Learning for Mobile Robot Navigation in Unknown Dynamic Environments

  • Findi, Ahmed H.M.;Marhaban, Mohammad H.;Kamil, Raja;Hassan, Mohd Khair
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.890-903
    • /
    • 2017
  • The problem of determining a smooth and collision-free path with maximum possible speed for a Mobile Robot (MR) which is chasing a moving target in a dynamic environment is addressed in this paper. Genetic Network Programming with Reinforcement Learning (GNP-RL) has several important features over other evolutionary algorithms such as it combines offline and online learning on the one hand, and it combines diversified and intensified search on the other hand, but it was used in solving the problem of MR navigation in static environment only. This paper presents GNP-RL based on predicting collision positions as a first attempt to apply it for MR navigation in dynamic environment. The combination between features of the proposed collision prediction and that of GNP-RL provides safe navigation (effective obstacle avoidance) in dynamic environment, smooth movement, and reducing the obstacle avoidance latency time. Simulation in dynamic environment is used to evaluate the performance of collision prediction based GNP-RL compared with that of two state-of-the art navigation approaches, namely, Q-Learning (QL) and Artificial Potential Field (APF). The simulation results show that the proposed GNP-RL outperforms both QL and APF in terms of smooth movement and safer navigation. In addition, it outperforms APF in terms of preserving maximum possible speed during obstacle avoidance.

Development of a Real-Time Collision Avoidance Algorithm for eXperimental Autonomous Vehicle (무인자율차량의 실시간 충돌 회피 알고리즘 개발)

  • Choe, Tok-Son
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1302-1308
    • /
    • 2007
  • In this paper, a real-time collision avoidance algorithm is proposed for experimental Autonomous Vehicle(XAV). To ensure real-time implementation, a virtual potential field is calculated in one dimensional space. The attractive force is generated by the steering command either transmitted in the remote control station or calculated in the Autonomous Navigation System(ANS) of the XAV. The repulsive force is generated by obstacle information obtained from Laser Range Finder(LRF) mounted on the XAV. Using these attractive and repulsive forces, modified steering, velocity and emergency stop commands are created to avoid obstacles and follow a planned path. The suggested algorithm is inserted as one component in the XAV system. Through various real experiments and technical demonstration using the XAV, the usefulness and practicality of the proposed algorithm are verified.

A Study on the Analysis ansd tne Quantification of Effect Level of Causal Factors in Tanker Casualties (유조선 사고의 원인분석과 유효수준 결정에 관한 연구)

  • 정재용;박진수
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • Traffic density has increased recently in Korean waters due to an expansion of the sea trade and the development of coastal fisheries. The enlargement of the coastal industrial belts and the development of coastal inslands further increases marine traffic. The rapid increase of marine traffic has often resulted in marine casualties with the attendant loss of life, damage to property, and marine pollution. Especially, tanker casualties may destroyed the food web and an untold amount of ocean resources. Un regard to the potential of tanker spills in Korean waters, systematic research in this field is lacking. In this paper, the data relating to a total of 261 tanker casualties in Korean waters has been compiled and statistically anlaysed. The result of this study describes the general trend of marine casualties in Korean waters, and describes the casualtiy database, from which their causes and consequences are derived and this results in the determination of the causal relationships connected to tanker casualties, and quantifies the effective level of causal factorsin Korean waters.

  • PDF

Control System of Service Robot for Hospital (병원용 서비스 로봇의 제어시스템)

  • 박태호;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.540-544
    • /
    • 2001
  • This paper addresses a hybrid control architecture for the hospital service robot, SmartHelper. In hybrid architecture, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the hybrid architecture is verified.

  • PDF

A Study on Carrier's Liability and Its Legislative Policy of Chinese Maritime Code (중국 해상법의 입법정책과 운송인의 책임에 관한 연구 - 국제해상운송협약과 비교법적으로 -)

  • Hwang, Seok-Kap;Jin, Qiu
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.1
    • /
    • pp.89-102
    • /
    • 1997
  • Since 1979, the People's Republic of China has been opeining their marke tprogressively toward all over the world for developing its own domestic economy and international trade. China also has paid a great attention to the international maritime transport due to the fact that its volume of international trade has increased continuoulsy. Under such circumstance, the Chinese Maritime Code was issued in 1992 in which the regulation with regard to carrier's liability occupied an important position. The author, therefore, selected this issue for demonstration of the legal proinciples about carrier's liability which is provided in the Chinese Maritime Code. The study on the issue is under guidance of related international conventions. On the basis of the above, the differences between the Code and relevant conventions have been pointed out in order to make the people in the field of shipping understood for legal system with regard to carrier's liability in China which is a great potential partner of Korea in shipping and trade.

  • PDF

Mobile Robot Localization Using Optical Flow Sensors

  • Lee, Soo-Yong;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.485-493
    • /
    • 2004
  • Open-loop position estimation methods are commonly used in mobile robot applications. Their strength lies in the speed and simplicity with which an estimated position is determined. However, these methods can lead to inaccurate or unreliable estimates. Two position estimation methods are developed in this paper, one using a single optical flow sensor and a second using two optical sensors. The first method can accurately estimate position under ideal conditions and also when wheel slip perpendicular to the axis of the wheel occurs. The second method can accurately estimate position even when wheel slip parallel to the axis of the wheel occurs. Location of the sensors is investigated in order to minimize errors caused by inaccurate sensor readings. Finally, a method is implemented and tested using a potential field based navigation scheme. Estimates of position were found to be as accurate as dead-reckoning in ideal conditions and much more accurate in cases where wheel slip occurs.

Study on Development of Hospital Service Robot SmartHelper (병원용 서비스 로봇 SmartHelper 개발에 관한 연구)

  • Choi, Kyung-Hyun;Lee, Seok-Hee;Park, Tae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.325-329
    • /
    • 2001
  • This paper addresses a control architecture for the hospital service robot, SmartHelper. With a sensing-reasoning-acting paradigm, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the control architecture is verified.

  • PDF