• 제목/요약/키워드: Navier-Stokes solution

검색결과 241건 처리시간 0.022초

GPU를 이용한 효율적인 비압축성 자유표면유동 해석 (AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU)

  • 홍환의;안형택;명훈주
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.

Navier-Stokes 유체의 최적제어를 위한 SQP 기법의 개발 (Large-scale SQP Methods for Optimal Control of steady Incompressible Navier-Stokes Flows)

  • Bark, Jai-Hyeong;Hong, Soon-Jo
    • 한국전산구조공학회논문집
    • /
    • 제15권4호
    • /
    • pp.675-691
    • /
    • 2002
  • 본 연구의 목적은 Navier-Stokes 유체와 같은 대용량 문제를 위한 최적화 기법의 개발에 있다. 이를 위해 본 연구에서는 reduced Hessian sequential quadratic programming을 개발하였다. 첫째, 유체의 해석을 위한 평형 방정식을 최적화 과정에서 제거하여 변수를 줄였고, 또한 평형방정식과 최적화 과정에서 연속기법을 사용하여 최적해를 보장하면서 더욱 해에 쉽게 접근하도록 하였다. 그리고 각 단계에서는 테일러 시리즈를 이용한 근사치를 이용하여 각 단계에서 대단히 좋은 초기치 값을 제공하여 최적해에 더욱 빠르게 접근하게 하고 아울러 유체의 평형방정식을 풀 때에도 해에 더욱 빠르고 쉽게 접근하도록 하였다. 이 기법을 항력을 줄이기 위한 유체의 최적 제어를 위한 문제에 적용하였다. 유체의 흐름을 제어하기 위하여 물체의 경계면에서 유체의 흡입(suction)과 방축(injection)이라는 기법을 사용하여 경계면에서 속도를 제어하였고, 목적함수로써 항력을 표현하기 위하여 에너지 소실의 변화율을 사용하였다. 예제를 통해 본 연구에서 개발한 최적화 기법의 효용성을 입증하였다.

BOUNDARY REGULARITY TO THE NAVIER-STOKES EQUATIONS

  • Bae, Hyeong-Ohk;Kim, Do-Wan
    • 대한수학회지
    • /
    • 제37권6호
    • /
    • pp.1059-1070
    • /
    • 2000
  • Under the critical assumption that ▽u$\in$L(sub)loc(sup)${\alpha}$,${\beta}$, 3/${\alpha}$ + 2/${\beta}$ $\leq$ 2 with ${\alpha}$ $\geq$ 3/2, a boundary L(sup)$\infty$ estimate for the solution is derived if the pressure on the boundary is bounded. Here, our estimate is local.

  • PDF

NUMERICAL SIMULATIONS FOR THE CONTRACTION FLOW USING GRID GENERATION

  • Salem, S.A.
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.383-405
    • /
    • 2004
  • We study the incomprssible Navier Stokes equations for the flow inside contraction geometry. The governing equations are expressed in the vorticity-stream function formulations. A rectangular computational domain is arised by elliptic grid generation technique. The numerical solution is based on a technique of automatic numerical generation of acurvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over relaxation iteration. The time dependent of the vorticity equation solved by using explicit marching procedure. We will apply the technique on several irregular-shapes.

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER FOR SADDLE POINT PROBLEMS FROM THE NAVIER-STOKES EQUATIONS

  • JANG, HO-JONG;YOUN, KIHANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권3호
    • /
    • pp.155-162
    • /
    • 2018
  • We describe a parallel implementation of a relaxed Hermitian and skew-Hermitian splitting preconditioner for the numerical solution of saddle point problems arising from the steady incompressible Navier-Stokes equations. The equations are linearized by the Picard iteration and discretized with the finite element and finite difference schemes on two-dimensional and three-dimensional domains. We report strong scalability results for up to 32 cores.

ANALYSIS OF VELOCITY-FLUX FIRST-ORDER SYSTEM LEAST-SQUARES PRINCIPLES FOR THE OPTIMAL CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS

  • Choi, Young-Mi;Lee, Hyung-Chun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권2호
    • /
    • pp.125-140
    • /
    • 2010
  • This paper develops a least-squares approach to the solution of the optimal control problem for the Navier-Stokes equations. We recast the optimality system as a first-order system by introducing velocity-flux variables and associated curl and trace equations. We show that a least-squares principle based on $L^2$ norms applied to this system yields optimal discretization error estimates in the $H^1$ norm in each variable.

Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법 (A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range)

  • 심은보;장근식
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

고속 축대칭 비행체 설계를 위한 점성 Inverse 기법 연구 (A Study on the Viscous Inverse Method for the High Speed Axisymmetric Body Design)

  • 이영기;이재우
    • 한국전산유체공학회지
    • /
    • 제2권2호
    • /
    • pp.35-43
    • /
    • 1997
  • An efficient inverse method for 1.he supersonic/hypersonic axisymmetric body design is developed for the parabolized Navier-Stokes equations. The developed method is examined numerically for three extreme testcases in the supersonic(M/sub ∞/=3.0) and hypersonic(M/sub ∞/=6.28) speeds. The first one is a negative pressure distribution near a vacuum pressure and the second one is a positive pressure distribution over the whole region of the body. The last one is the case of abrupt change of pressure distribution to zero in the forward region of the body. These testcases show the robustness of the method. By introducing a regular-falsi method and by using a not-fully converged inverse solution, the convergence behavior was greatly improved.

  • PDF

Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석 (A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method)

  • 권창오;김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.123-141
    • /
    • 1996
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone(5°) geometry. The effective gamma(γ), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about 3 ∼ 5 percent. The heat transfer coefficient were also calculated. The results were compared with VSL results in order to validate the current numerical analysis. The results from current method were compared well VSL results ; however, not well at near nose. The proper boundary condition and grid system will be studied to improve the solution quality.

  • PDF

Navier-Stokes 방정식을 이용한 초음속 제트 추진 비행체 후방의 유동해석 (Navier-Stokes Computations of Supersonic Flow over Missile Afterbodies Containing a Centered Propulsive Jet)

  • 윤병국;정명균
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.356-368
    • /
    • 1992
  • The strongly interactive flow field near a missile afterbody containing a centered exhaust jet is numerically investigated. The thin shear layer and full formulation of compressible, Reynolds I averaged Navier-Stokes equations are solved. A time-dependent implicit numericals algorithm is used to obtain solution for a variety of flow conditions. Turbulence closure is implemented by the Baldwin-Lomax algebraic eddy viscosity model. An adaptive grid technique is adopted to resolve flow regimes with large gradients and to improve the accuracy and efficiency of the computation, Numerical results show good agreemement with experimental data in all regimes.