• Title/Summary/Keyword: Navier-Stokes Design

Search Result 428, Processing Time 0.028 seconds

Development of a Submerged Propeller Turbine for Micro Hydro Power

  • Kim, Byung-Kon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.45-56
    • /
    • 2015
  • This paper aims to develop a submerged propeller turbine for micro hydropower plant which allows to sustain high values of efficiency in a broad range of hydrological conditions (H=2~6 m, $Q=0.15{\sim}0.39m^3/s$). The two aspects to be considered in this development are mechanical simplicity and high-efficiency operation. Unlike conventional turbines that have spiral casing and gear box, this is directing driving and no spiral casing. A 10 kW class turbine which has the most high potential of the power generation has been developed. The most important element in the design of turbine is the runner blade. The initial blade is designed using inverse design method and then the runner geometry is modified by classical hydraulic method. The design process is carried out in two steps. First, the blade shape is fix and then other components of submerged propeller turbine are designed. Computational fluid dynamics analyses based on the Navier-Stokes equations have been used to obtain overall performance data for the blade and the full turbine, respectively. The results generated by performance parameters(head, guide vane opening angle and rotational speed) variations are theoretically analysed. The evaluation criteria for the blade and the turbine performances are the pressure distribution and flow's behavior on the runner blades and turbine. The results of simulation reveals an efficiency of 91.5% and power generation of 10.5kW at the best efficiency point at the head of 4m and a discharge of $0.3m^3/s$.

Numerical and Experimental Study on the Surge Performance Improvement by the Bleed Slot Casing of a Centrifugal Compressor (서지성능 향상을 위한 원심압축기의 Bleed Slot Casing의 설계변수에 대한 해석 및 시험 평가)

  • Kim, Hong-Won;Chung, Jae-Hoon;Ryu, Seung-Hyup;Lee, Geun Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.22-28
    • /
    • 2015
  • The primary design goal of a compressor is focused on improving efficiency. Secondary objective is to widen the operating range of compressor. This paper presents a numerical and experimental investigation of the influence of the bleed slot on the operating range for the 1.2 MW class centrifugal compressor installed in a turbocharger. The main design parameters of the bleed slot casing are upstream slot position, inlet pipe slope, downstream slot position and width. The DOE(design of experiment) method was carried out to optimize the casing design. Numerical analyses were done by the commercial code ANSYS-CFX based on the three dimensional Reynolds-averaged Navier-Stokes equations. Results showed that efficiency and pressure ratio increased as the downstream slot position and width were smaller and the upstream position was located away from the impeller inlet. Experimental works were also done with and without the bleed slot casing. The simulation results were in good agreement with the test data. Enhancement of both the surge margin up to 26.5% and the pressure ratio with the optimized bleed slot design were achieved, compared with the surge margin of only 6.6% without the bleed slot casing.

Development and CFD Analysis of a New Type Pre-Swirl Duct for 176k Bulk Carrier (176k Bulk Carrier에 대한 신개념 타입의 Pre-Swirl Duct의 개발 및 CFD 해석)

  • Yoo, Gwang Yeol;Kim, Moon Chan;Shin, Yong Jin;Shin, Irok;Kim, Hyun Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.373-382
    • /
    • 2019
  • This paper shows numerical results for the estimation of the propulsor efficiency of Pre-Swirl Duct for 176k bulk carrier as well as its design method. Reynolds averaged Navier-Stokes equations have been solved and the k-epsilon model applied for the turbulent closure. The propeller rotating motion is determined using a sliding mesh technique. The design process is divided into each part of Pre-Swirl Duct, duct and Pre-Swirl Stator. The design of duct was performed first because it is located further upstream than Pre-Swirl Stator. The distribution of velocity through the duct was analyzed and applied for the design of Pre-Swirl Stator. The design variables of duct include duct angle, diameter, and chord length. Diameter, chord length, equivalent angle are considered when designing the Pre-Swirl Stator. Furthermore, a variable pitch angle stator is applied for the final model of Pre-Swirl Duct. The largest reduction rate of the delivered power in model scale is 7.6%. Streamlines, axial and tangential velocities under the condition that the Pre-Swirl Duct is installed were reviewed to verify its performance.

Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study (파라메트릭 스터디를 통한 조류발전용 다리우스 터빈의 설계연구)

  • Han, Jun-Sun;Hyun, Beom-Soo;Choi, Da-Hye;Mo, Jang-Oh;Kim, Moon-Chan;Rhee, Shin-Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • This paper deals with the performance analysis and design of the Darrieus-type vertical axis turbine to evaluate the effect of key design parameters such as number of blade, blade chord, pitch and camber. The commercial CFD software FLUENT was employed as an unsteady Reynolds-Averaged Navier-Stokes (RANS) solver with k-e turbulent model. Grid system was modelled by GAMBIT. Basic numerical methodology of the present study is appeared in Jung et al. (2009). Two-dimensional analysis was mostly adopted to avoid the barrier of massive calculation required for parametric study. It was found that the highly efficient turbine model could be designed through the optimization of design parametrrs.

Parametric Designs of a Pre-swirl Duct for the 180,000DWT Bulk Carrier Using CFD (CFD를 이용한 180,000 DWT Bulk Carrier용 Pre-Swirl Duct의 파라메트릭 설계)

  • Cho, Han-Na;Choi, Jung-Eun;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.343-352
    • /
    • 2016
  • In this study, a pre-swirl duct for the 180,000 DWT bulk carrier has been designed from a propulsion standpoint using CFD. The stern duct - designed by NMRI - was selected as the initial duct. The objective function is to minimize the value of delivered power in model scale. Design variables of the duct include duct angle, diameter, chord length, and vertical and horizontal displacements from the center. Design variables of the stators are blade number, arrangement angle, chord length, and pitch angle. A parametric design was carried out with the objective function obtained using CFD. Reynolds averaged Navier-Stokes equations have been solved; and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. MRF and sliding mesh models have been applied to simulate the actuating propeller. A self-propulsion point has been obtained from the results of towing and self-propelled computations, i.e., form factor obtained from towing computation and towing forces obtained from self-propelled computations of two propeller rotating speeds. The reduction rate of the delivered power of the improved stern duct is 2.9%, whereas that of the initial stern duct is 1.3%. The pre-swirl duct with one inner stator in upper starboard and three outer stators in portside has been designed. The delivered power due to the designed pre-swirl duct is reduced by 5.8%.

Influence of viscous effects on numerical prediction of motions of SWATH vessels in waves

  • Brizzolara, Stefano;Bonfiglio, Luca;Medeiros, Joao Seixas De
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.219-236
    • /
    • 2013
  • The accurate prediction of motion in waves of a marine vehicle is essential to assess the maximum sea state vs. operational requirements. This is particularly true for small crafts, such as Autonomous Surface Vessels (ASV). Two different numerical methods to predict motions of a SWATH-ASV are considered: an inviscid strip theory initially developed at MIT for catamarans and then adapted for SWATHs and new a hybrid strip theory, based on the numerical solution of the radiation forces by an unsteady viscous, non-linear free surface flow solver. Motion predictions obtained by the viscous flow method are critically discussed against those obtained by potential flow strip theory. Effects of viscosity are analyzed by comparison of sectional added mass and damping calculated at different frequencies and for different sections, RAOs and motions response in irregular waves at zero speed. Some relevant conclusions can be drawn from this study: influence of viscosity is definitely non negligible for SWATH vessels like the one presented: amplitude of the pitch and heave motions predicted at the resonance frequency differ of 20% respectively and 50%; in this respect, the hybrid method with fully non-linear, viscous free surface calculation of the radiation forces turns out to be a very valuable tool to improve the accuracy of traditional strip theories, without the burden of long computational times requested by fully viscous time domain three dimensional simulations.

NUMERICAL STUDY OF TURBINE BLADE COOLING TECHNIQUES (터빈 블레이드 냉각시스템에 관한 수치해석적 연구)

  • Kim, K.Y.;Lee, K.D.;Moon, M.A.;Heo, M.W.;Kim, H.M.;Kim, J.H.;Husain, A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.530-533
    • /
    • 2010
  • This paper presents numerical analysis and design optimization of various turbine blade cooling techniques with three-dimensional Reynolds-averaged Navier-Stokes(RANS) analysis. The fluid flow and heat transfer have been performed using ANSYS-CFX 11.0. A fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness with the radial basis neural network method. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. The impingement jet cooling has been performed to investigate heat transfer characteristic with geometry variables. Distance between jet nozzle exit and impingement plate, inclination of nozzle and aspect ratio of nozzle hole are considered as geometry variables. The area averaged Nusselt number is evaluated each geometry variables. A rotating rectangular channel with staggered array pin-fins has been investigated to increase heat transfer performance ad to decrease friction loss using KRG modeling. Two non-dimensional variables, the ratio of the eight diameter of the pin-fins and ratio of the spacing between the pin-fins to diameter of the pin-fins selected as design variables. A rotating rectangular channel with staggered dimples on opposite walls are formulated numerically to enhance heat transfer performance. The ratio of the dimple depth and dimple diameter are selected as geometry variables.

  • PDF

Computational study of a small scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models

  • Aresti, Lazaros;Tutar, Mustafa;Chen, Yong;Calay, Rajnish K.
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.647-670
    • /
    • 2013
  • The paper presents a numerical approach to study of fluid flow characteristics and to predict performance of wind turbines. The numerical model is based on Finite-volume method (FVM) discretization of unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The movement of turbine blades is modeled using moving mesh technique. The turbulence is modeled using commonly used turbulence models: Renormalization Group (RNG) k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ and k-${\omega}$ turbulence models. The model is validated with the experimental data over a large range of tip-speed to wind ratio (TSR) and blade pitch angles. In order to demonstrate the use of numerical method as a tool for designing wind turbines, two dimensional (2-D) and three-dimensional (3-D) simulations are carried out to study the flow through a small scale Darrieus type H-rotor Vertical Axis Wind Turbine (VAWT). The flows predictions are used to determine the performance of the turbine. The turbine consists of 3-symmetrical NACA0022 blades. A number of simulations are performed for a range of approaching angles and wind speeds. This numerical study highlights the concerns with the self-starting capabilities of the present VAWT turbine. However results also indicate that self-starting capabilities of the turbine can be increased when the mounted angle of attack of the blades is increased. The 2-D simulations using the presented model can successfully be used at preliminary stage of turbine design to compare performance of the turbine for different design and operating parameters, whereas 3-D studies are preferred for the final design.

입구유속의 진폭이 층류유동에서 사각실린더 주위의 와류쉐딩과 공진현상에 미치는 영향에 관한 수치해석적 연구

  • 정영종;심석구;강신형
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.603-608
    • /
    • 1998
  • 유체내의 물체 주위에서 유동박리로 인해 생성되는 와류쉐딩은 열전달이나 물질전달을 촉진시키는 이점이 있으나, 항력을 증가시키거나 유동 및 온도의 요동에 의해 구조물을 손상시키는 단점이 있다. 특히 물체와 주위 유동 사이에 공진이 일어나면 항력값이 증가하면서 항력과 양력의 진폭이 급격히 증가하여 물체에 심각한 손상을 초래할 수 있다. 본 연구에서는 레이놀즈수 200 이하의 층류유동에서 공진시 물체 주위의 유동현상과 이로 인한 양력과 항력의 변화들을 수치해석방법을 통하여 분석하였다 수치해석은 일반좌표계에서 유한체적법을 적용하여 Navier-Stokes 방정식을 차분화하였다. 이때 방정식의 종속변수로는 공변속도를 채택하였으며, 이산화된 방정식은 분리단계법을 이용하여 수치해를 구하였다. 입구유속의 강제진동에 의한 사각실린더 주위의 와류쉐딩시 공진이 발생하는 강제진동수의 범위는 원통실린더의 경우와 유사하였으나 상대적으로 폭이 더 좁았다 그리고 공진이 발생하는 강제진동수의 범위는 진폭이 증가할수록 증가하였다. 쉐딩 진동수가 일정하면서 입구유속의 진폭이 증가하면 이에 비례하여 실린더 주위의 유속이 상대적으로 증가하게 되어 와도가 강해지면서 입추유속 진폭에 비례하여 항력의 평균값 뿐 아니라 항력과 양력의 진폭도 증가하였다. 그리고 실린더 뒷면의 와류 생성영역은 진폭에 비례하여 감소하였다. 진폭의 변화에 따라 상변화가 서로 상이한 것은 실린더 뒤쪽의 와류들이 상하면의 합력차이를 변화시켰고 이것이 진폭변화에 따라 상변화를 상이하게 나타나게 한 원인으로 진폭이 클수록 실린더 뒤쪽에서 압력변화가 심하게 변하면서 실린더 앞쪽까지 더 많은 영향을 미쳤기 때문이다.선원의 사용자에게 제공되는 최종방사능을 평가하는데 유용하게 사용될 수 있다.r의 분포를 보였다.cting the effect of earthquake on structures. This paper is based on the presented paper at the Bertero Symposium held in January 31an4 February 1 at Berkeley, California, USA which was entitled "Needs to Evaluate Real Seismic Performance of Buildings-Lessons from 1995 Hyogoken-Nambu Earthquake-". The lessons for buildings from the damage due to the Hyogoken-Nambu Earthquake are necessity to develop more rational seismic design codes based upon a performance-based design concept, and to evaluate seismic performance of existing buildings. In my keynote lecture at the Korean Association for Computational Structural Engineering, the history of seismic design and use of structural analysis in Japan, the lessons for buildings from the Hyogoken-Nambu Earthquake, the

  • PDF

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.