• 제목/요약/키워드: Navier-Stokes Design

검색결과 428건 처리시간 0.026초

축류송풍기 설계를 위한 최적설계기법의 평가 (Assessment of Optimization Methods for Design of Axial-Flow Fan)

  • 최재호;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구 (Center-of-Gravity Effect on Supersonic Separation from the Mother Plane)

  • 지영무;이재우;변영환;박준상
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.423-426
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

날개꼴의 형상 최적화를 위한 유동방정식 영향 연구 (Influence of Flow Solvers On Airfoil Shape Optimization)

  • 정희택;류병석
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.67-73
    • /
    • 1999
  • In the present paper, three types of the flow solvers were used to investigate the influence on the airfoil shape optimization. The adopted equations, i.e., Euler, thin layer Navier-Stokes and full Navier-Stokes ones. are solved using implicit LU-ADI decomposition scheme. The gradient projection method with the sinusoidal function was used as an optimization algorithm. The present numerical method was applied to the drag minimization problems under the initial shape of NACA0012 airfoils.

  • PDF

날개꼴의 형상 최적화를 위한 유동방정식 영향 연구 (Influence of Flow Solvers On Airfoil Shape Optimization)

  • 정희택;류병석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.171-176
    • /
    • 1999
  • In the present paper, three types of the flow solvers were used to investigate the influence on the airfoil shape optimization. The adopted equations, i.e., Euler , thin layer Navier- Stokes and full Navier-Stokes ones, are solved using implicit LU-ADI decomposition scheme. The feasible direction algorithm with the sinusoidal function was used as an optimization algorithm. The present numerical method was applied to the drag minimization problems under the initial shape of NACA0012 airfoils.

  • PDF

삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석 (Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect)

  • 한용진;김광용;고성호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

원심다익송풍기의 고효율 설계를 위한 수치최적설계 (Numerical Optimization of a Multi-blades Centrifugal Fan for High-efficiency Design)

  • 서성진;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.32-38
    • /
    • 2004
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard $k-{epsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

Design Optimization of Axial Flow Compressor Blades with Three-Dimensional N avier-Stokes Solver

  • Lee, Sang-Yun;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.1005-1012
    • /
    • 2000
  • Numerical optimization techniques combined with a three-dimensional thin-layer Navier-Stokes solver are presented to find an optimum shape of a stator blade in an axial compressor through calculations of single stage rotor-stator flow. Governing differential equations are discretized using an explicit finite difference method and solved by a multi-stage Runge-Kutta scheme. Baldwin-Lomax model is chosen to describe turbulence. A spatially-varying time-step and an implicit residual smoothing are used to accelerate convergence. A steady mixing approach is used to pass information between stator and rotor blades. For numerical optimization, searching direction is found by the steepest decent and conjugate direction methods, and the golden section method is used to determine optimum moving distance along the searching direction. The object of present optimization is to maximize efficiency. An optimum stacking line is found to design a custom-tailored 3-dimensional blade for maximum efficiency with the other parameters fixed.

  • PDF

무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구 (Center-of-Gravity Effect on Supersonic Separation from the Mother Plane)

  • 지영무;이재우;변영환;박준상
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.36-40
    • /
    • 2006
  • 초음속 공중발사 로켓의 모선분리에 대한 유동해석을 수행하였다. 모선(F-4E Phantom)에서 분리되는 로켓주변 유동장의 정상/비정상 유동해석을 위해 압축성 Wavier-Stokes방정식이 사용되었으며, 해석결과는 모선과 로켓간의 충격파-팽창파 간섭효과를 잘 보여주고 있다. 무게중심의 변화에 따른 로켓의 거동을 예측하기 위하여 세 가지 경우에 대한 전산해석을 수행하였으며, 결과적으로 초음속 공중발사 로켓의 안전한 모선분리를 위한 설계 가이드라인을 제시 하였다.

  • PDF

사류송풍기의 유동해석 및 최적설계 (Flow analysis and design optimization of a mixed-flow fan)

  • 서성진;전재욱;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.684-689
    • /
    • 2001
  • In this study, three-dimensional viscous flow analysis and optimization are presented for the design of a mixed-flow fan. Steady, imcompressible, three-dimensional Reynolds averaged Navier-Stokes equations are used as governing equations, and standard $k-{\varepsilon}$ turbulence model is chosen as a turbulence model. Governimg equations are discretized using finite volume method. Upwind difference scheme is used for the discretization of the convective term and SIMPLEC algorithm is used as a velocity-pressure correction procedure. The computational results are compared with the results obtained by TASCflow. For the numerical optimization of the design, objective function is defined as a ratio of generation of the turbulent energy to pressure head. Sweep angles are used as design variables.

  • PDF

유체기계 임펠러의 최적 역설계 기법 (Optimization Inverse Design Technique for Fluid Machinery Impellers)

  • 김종섭;박원규
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.37-45
    • /
    • 1998
  • A new and efficient inverse design method based on the numerical optimization technique has been developed. The 2-D incompressible Navier-Stokes equations are solved for obtaining the objective functions and coupled with the optimization procedure to perform the inverse design. The steepest descent and the conjugate gradient method have been applied to find the searching direction. The golden section method was applied to compute the design variable intervals. It has been found that the airfoil and the pump impellers are well converged to their targeting shapes.

  • PDF