• Title/Summary/Keyword: Navier-Stokes Analysis

Search Result 917, Processing Time 0.024 seconds

Dissolved oxygen analysis of an abalone aquaculture cage system using computational fluid dynamics

  • Kim, Taeho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.155-162
    • /
    • 2015
  • Abalone (Haliotis discus hannai) is a shellfish that feeds on kelp and, as a product, it can often achieve a high market value. However, the dissolved oxygen (DO) levels in coastal waters in Korea have been negatively impacted by pollution from many anthropogenic sources. Herein, a computational fluid dynamics (CFD) software package was used to analyze the distribution of the DO concentration within an abalone containment structure. A finite volume approach was used to solve the Reynolds-averaged Navier-Stokes equations combined with a $k-{\varepsilon}$ turbulence model to describe the flow. The distribution of DO was determined within the control volume domain, and the transport equations of the pollutants were interpreted using a CFD model. The CFD analysis revealed that more than 60% and 30% of the relative oxygen concentration in one and two containers, respectively, was maintained when the flow acts along the six sheets of polyethylene plates. Therefore, it is clear that the abalone plate shelters should be placed parallel to the flow.

Study on Electrohydrodynamic Analysis of Cylinder Type ESP (원통형 전기집진기의 전기유체역학적 해석에 관한 연구)

  • 조용수;여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.243-254
    • /
    • 1996
  • The main purpose of this study is to investigate the collection efficiency characteristics of a cylindrical ESP. To do that, it is necessary to analyze the electric field, gas flow field, and mechanism of particle movement by numerical simulation based on EHD model. For a gas flow field, Navier-Stokes equation involving the electric source term was solved by SIMPLE algorithm. In case of the electric field, the current continuity and electric field equations were solved by S.O.R. method. The analysis of particle movement was performed on the basis of PSI-CELL model from the Lagrangian viewpoint. The results showed that the influence on the gas flow field by the electric field is almost negligible in a cylindrical ESP. The particle drift velocity $V_P$ toward the collection surface is increased continuously by the electrostatic force due to the rise of particle charge as the particle is moving to the flow direction and the particle size becomes larger. The collection efficiency is to quitely higher with the increase of applied voltage for the same particle size, while becomes smaller as the inlet velocity is increased.

  • PDF

Thermal-Hydraulic Analysis of A Wire-Spacer Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.473-478
    • /
    • 2004
  • This work presents the Thermal Hydraulic analysis has been performed for a 19-pin wire-spacer fuel assembly using three-dimensional Reynolds-averaged Navier-Stokes equations. SST model is used as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary condition at inlet and outlet of the calculation domain. The overall results far a preliminary calculation show a good agreement with the experimental observations. It has been found that the major unidirectional flows are the axial velocity in sub-channels and the peripheral sweeping flows and the velocities are found to be following a cyclic path of period equal to the wire-wrap pitch. The temperature is found to be maximum in the central region and also, there exist a radial temperature gradient between the fuel rods. The major advantage of performing this kind of analysis is the prediction of thermal-hydraulic behavior of a fuel assembly with much ease.

  • PDF

Numerical Analysis of Centrifugal Impeller for Different Viscous Liquids

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Oil and gas industry pumps viscous fluids and investigation of flow physics is important to understand the machine behavior to deliver such fluids. 3D numerical flow simulation and analysis for different viscous fluids at different rotational speeds of a centrifugal impeller have been reported in this paper. Reynolds-averaged Navier Stokes (RANS) equations were solved and the performance analysis was made. Standard two equation k-${\varepsilon}$ model was used for the turbulence closure of steady incompressible flow. An inlet recirculation and reverse flow in impeller passage was observed at low impeller speeds. It was also found that the higher viscosity fluids have higher recirculation which hinders the impeller performance.

Mechanism of Electrohydrodynamic Flow in AC Electrowetting (AC 전기습윤 중 전기수력학 유동의 메카니즘)

  • Lee, Ho-Rim;Ko, Sung-Hee;Yun, Sung-Chan;Kang, Kwan-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2648-2651
    • /
    • 2008
  • In AC electrowetting, it has been reported that there is a flow inside droplets. The flow characteristics such as flow rate, direction and the pattern of streamline are altered according to the frequency range of applied voltage. However, the mechanism of the flow has not been explained yet. This work is concentrated on investigation of the flow mechanism when high-frequency voltage is applied to droplets. We propose that this phenomenon arises from the electro-thermal flow. A numerical analysis is performed for the needle-electrode-plane geometry in which the Coulombic force term is included in the Navier-Stokes equation. According to our analysis, electrical charge is generated due to conductivity gradient which is originated from the nonuniform Joule heating of fluid medium. The result of the analysis is compared with experimental result.

  • PDF

Flow Analysis and Performance Evaluation of a Ventilation Axial-Flow Fan Depending on the Position of Motor (환기용 축류송풍기의 유동해석 및 모터 위치에 따른 성능 특성 연구)

  • Kim, Jae-Woo;Kim, Jin-Hyuk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.25-30
    • /
    • 2010
  • Flow analysis and performa nce evaluation have been performed for a ventilation axial-flow fan with different positions of the motor. Two different positions of motor have been tested; one is in front of the impeller and the other is behind the impeller. Flow analyses are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations through a finite-volume solver. Preliminary numerical calculations are carried out to test the performances of different turbulence models, i.e., SST model, k-$\omega$ model, and k-$\varepsilon$ model with and without using empirical wall function in the flow analysis. The validation of numerical analyses has been performed in comparison with the experimental data. The numerical results for the performance characteristics of the ventilation axial-flow fan with two different positions of the motor have been presented.

Nodeless Variables Finite Element Method and Adaptive Meshing Teghnique for Viscous Flow Analysis

  • Paweenawat Archawa;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1730-1740
    • /
    • 2006
  • A nodeless variables finite element method for analysis of two-dimensional, steady-state viscous incompressible flow is presented. The finite element equations are derived from the governing Navier-Stokes differential equations and a corresponding computer program is developed. The proposed method is evaluated by solving the examples of the lubricant flow in journal bearing and the flow in the lid-driven cavity. An adaptive meshing technique is incorporated to improve the solution accuracy and, at the same time, to reduce the analysis computational time. The efficiency of the combined adaptive meshing technique and the nodeless variables finite element method is illustrated by using the example of the flow past two fences in a channel.

CFD-FEA ANALYSIS OF HYDRAULIC SHOCK ABSORBER VALVE BEHAVIOR

  • Shams, M.;Ebrahimi, R.;Raoufi, A.;Jafari, B.J.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.615-622
    • /
    • 2007
  • In this study, a Coupled Computational Fluid Dynamics(CFD) and Finite Element Analysis(FEA) method are used to predict and evaluate the performance of an automotive shock absorber. Averaged Navier-Stokes equations are solved by the SIMPLE method and the RNG $k-\varepsilon$ is used to model turbulence. CFD analysis is carried out for different intake valve deflections and piston velocities. The force exerted on the valve in each valve deflection is obtained. The valve deflection-force relationship is investigated by the FEA method. The force exerted on the valve in each piston velocity is obtained with a combination of CFD and FEA results. Numerical results are compared with the experimental data and have shown agreement. Dependence of valve deflection as a function of piston velocity is investigated. Effects of hydraulic oil temperature change on valve behavior are also studied.

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park, Young-Min;Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.269-272
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using computational fluid dynamics. For the numerical analysis of wind turbine. Three dimensional Navier-Stokes solver with various turbulence models was tested and realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with experiment and blind test data. Using the present method, numerical simulations for various size of wind tunnel model were carried out and characteristics were observed in detail. The power loss due to the interference between wind turbine and nacelle was also computed for relatively larger nacelle installation in wind tunnel test. The present results showed good correlations with experimental data and reasonable trends of scale effect of wind turbine.

  • PDF

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF