• Title/Summary/Keyword: Navier-Stokes Analysis

Search Result 915, Processing Time 0.024 seconds

Computation of Flows Around a High Speed Catamaran

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.465-472
    • /
    • 2001
  • A numerical study is carried out to clarify the characteristics of flow fields and breaking phenomena around a high speed catamaran hull advancing on calm water. Computations are carried out for Froude numbers between 0.2 and 1.0 and for ratios of the distance between hulls to the catamaran length varying between 0.2 and 0.5 for a mathematically defined Wigley hull. A Navier-Stokes solver which includes the nonlinearities of free surface conditions is employed. Computations are performed in a rectangular grid system based on the Marker & Cell method. For validation, present computation results are compared with existing experimental results. As an application, the results of the displacement catamaran are used for the breaking analysis.

  • PDF

Numerical Analysis of Ocean Wave by Multi-Grid Method (복합격자 방법에 의한 해양파의 수치해석)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.175-182
    • /
    • 1999
  • The ocean wave is hydrodynamically investigated to get more reliable solution. To improve the computational accuracy more fine grids are used with relatively less computer storage on the free surface. One element of the free surface is discretized into more fine grids because the free-surface waves are much affected by the grid size in the finite difference scheme. Here the multi-grid method is applied to confirm the efficiency for the S103 ship model by solving the Navier-Stokes equation for the turbulent flows. According to the computational result approximately 30% can be improved in the free surface generation, Finally the limiting streamlines show numerical result is similar to the experiment by twin tuft.

  • PDF

ANALYSIS OF TURBULENT HEAT TRANSFER FROM STAGGERED PIN-FIN ARRAYS WITH DIAMOND SHAPED ELEMENTS AT VARIOUS GEOMETRICAL CONFIGURATIONS (엇갈린 다이아몬드형 핀휜의 형상에 따른 난류열전달 성능해석)

  • Cho, A.T.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.20-26
    • /
    • 2008
  • A numerical study is carried out to analyze the steady three-dimensional turbulent flow and convective heat transfer in a staggered pin-fin array with diamond shaped elements at various geometrical configurations. Steady Reynolds-averaged Navier-Stokes equations and energy equation are solved using a finite volume based solver. Shear stress transport (SST) model is used as turbulence closure. The computational domain is composed of one pitch of pin-fin displacement with periodic boundary conditions on the surfaces normal to the streamwise direction and the cross-streamwise direction. The numerical results for Nusselt number and friction factor are validated with experimental results. The effects of pin angle, pin height and pitch on Nusselt number, friction factor and efficiency index are investigated.

ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE (엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

Effects of the Lateral Ejection Angles and Distances of Double-Jet Holes on Flim Cooling Effectiveness (이중분사 막냉각 홀의 측면 분사각 및 홀 사이의 거리가 막냉각 효율에 미치는 영향)

  • Choi, Dae-Woong;Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • In the present work, a parametric study on double-jet film-cooling has been carried out to enhance the film-cooling effectiveness using three-dimensional Reynolds-averaged Navier-Stokes analysis. The shear stress transport turbulence model is used as the turbulence closure. The lateral ejection angles and the lateral and streamwise distance between the centers of the cooling holes are chosen as the geometric parameters. The spatially averaged film-cooling effectiveness averaged over an area of 8 hole diameters in width and 30 hole diameters in streamwise length is used to evaluate the performance of film-cooling. The parameter of the lateral distance has the largest impact on the film cooling effectiveness compared to the others. On the other hand, the parameter of streamwise distance gives the least influence on the film cooling effectiveness.

A COMPARATIVE STUDY OF TWO AND THREE DIMENSIONAL LOW REYNOLDS NUMBER FLOW (2차원 및 3차원 저레이놀즈수 유동 해석 비교 연구)

  • Lee, Jae-Hun;Jung, Kyoung-Jin;Lee, Kil-Tae;Kang, In-Mo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.3-7
    • /
    • 2009
  • In this study, two and three dimensional low Reynolds number flows are compared. For the two dimensional flow, an airfoil was considered and for the three dimensional low wing and full-body aircraft were considered. Because a flight condition of the aircraft is in a low Reynolds number flow, itl requires reflecting flow transition. In the two dimensional analysis, transition is predicted using en method. In the three dimensional flow, the effect of transition is included using k-w SST turbulence models.

  • PDF

SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR (측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석)

  • Lee, B.W.;Park, S.I.;Park, W.G.;Lee, K.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.177-184
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

  • PDF

A STUDY ON THE LOW REYNOLDS NUMBER AIRFOILS FOR THE DESIGN OF THREE DIMENSIONAL WING (3차원 날개 설계를 위한 저레이놀즈수 에어포일에 대한 연구)

  • Jung, K.J.;Lee, J.;Kwon, J.H.;Kang, I.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.90-96
    • /
    • 2009
  • In this study, a generic airfoil designed by the inverse method was evaluated with several candidate airfoils as a first step. Each airfoil was compared with respect to aerodynamic performance to meet the requirement of HALE(high altitude long endurance) aircraft. The second step was to optimize the candidate airfoil using the couple of optimization formulations to down select an optimum airfoil. For the analysis of low Reynolds number 2D flow, Drela's MSES was used. After comparing the aerodynamic results, the best airfoil was chosen to construct the baseline 3D wing. The Navier-Stokes code was used to evaluate the overall aerodynamic performance of designed wing with other wings. The results show that the designed wing has the best performance compared with other wings.

  • PDF

Influence of the Leading Edge Shape of a 2-Dimensional hydrofoil on Cavitation Characteristics (2차원 날개단면의 앞날 형상 변화에 따른 캐비테이션 특성 연구)

  • I.H. Song;J.W. Ahn;I.S. Moon;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-66
    • /
    • 2000
  • In order to improve cavitation characteristics for a high-speed propeller, leading edge shape of a 2-D hydrofoil is investigated numerically and experimentally. For flowfield analysis around the leading edge, the incompressible Reynolds Averaged Navier-Stokes(RANS) equation is solved using the standard $k-\varepsilon$ turbulence model and a finite volume method(FVM). The cavitation thickness, which is occurred on hydrofoil surface, is predicted using the panel code. It is shown that the calculation codes predict the experimental trend fairly well. From these results, new hydrofoils are designed

  • PDF

Numerical Optimization of the Shape of Mixing Vane in Nuclear Fuel Assembly (핵연료 집합체 혼합날개형상의 수치최적설계)

  • Seo Jun-Woo;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.929-936
    • /
    • 2004
  • In the present work, shape of the mixing vane in Plus7 fuel assembly has been optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. Standard $k-{\epsilon}$ model is used as a turbulence closure. The Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of friction loss. Bend angle and base length of mixing vane are selected as design variables. Thermal-hydraulic performances for different shapes of mixing vane have been discussed, and optimum shape has been obtained as a function of weighting factor in the objective function.