• Title/Summary/Keyword: Navier-Stokes 유체

Search Result 935, Processing Time 0.027 seconds

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING (연속 아연 도금 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

Optimization of a Rotating Two-Pass Rectangular Cooling Channel with Staggered Arrays of Pin-Fins (곡관부 하류에 핀휜이 부착된 회전 냉각유로의 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.43-53
    • /
    • 2010
  • This study investigates a design optimization of a rotating two-pass rectangular cooling channel with staggered arrays of pin-fins. The radial basis neural network method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The ratio of the diameter to height of the pin-fins and the ratio of the streamwise spacing between the pin-fins to height of the pin-fin are selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Results are presented for streamlines, velocity vector fields, and contours of Nusselt numbers, friction coefficients, and turbulent kinetic energy. These results show how fluid flow in a two-pass square cooling channel evolves a converted secondary flows due to Coriolis force, staggered arrays of pin-fins, and a $180^{\circ}$ turn region. These results describe how the fluid flow affects surface heat transfer. The Coriolis force induces heat transfer discrepancy between leading and trailing surfaces, having higher Nusselt number on the leading surface in the second pass while having lower Nusselt number on the trailing surface. Dean vortices generated in $180^{\circ}$ turn region augment heat transfer in the turning region and in the upstream region of the second pass. As the result of optimization, in comparison with the reference geometry, thermal performance of the optimum geometry shows the improvement by 30.5%. Through the optimization, the diameter of pin-fin increased by 14.9% and the streamwise distance between pin-fins increased by 32.1%. And, the value of objective function decreased by 18.1%.

Numerical Investigation, Calibration Method of the Interaction between Ieodo Ocean Research Station and Ocean Current (수치해석을 이용한 이어도 기지 구조물이 해수 유동에 미치는 영향 분석과 해류 관측 평가 및 보정방안 연구)

  • Hong, Woo-Ram;Shim, Jae-Seol;Min, In-Ki;Kim, Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.476-483
    • /
    • 2007
  • One of the main function of Ieodo Ocean Research Station is to service the information about the weather and fishing grounds condition which are collected through calibrating convection flow and ocean current around the station. However, due to the influence of the station's structure below sea level, it is difficult to obtain the exact flow data. Therefore, it is required to research on the effect of the structure and the method to evaluate and revise the observed data. In this paper, as a basic study, it deals with the algorithm that simulate the interaction between ocean current and the station structure, followed by discussions about the way to applicate the algorithm. Through 3-dimensional computational fluid dynamics analyses (using Navier-Stokes equations with K-turbulence model), the influence of the station and submerged rocks are quantitatively evaluated, and we would suggest methods how to obtain accurate flow information from the measured rough data.

A Numerical Study of Unsteady Flow around a Vertical Axis Turbine for Tidal Current Energy Conversion (조류발전용 수직축 터빈 주위의 비정상 유동 수치해석)

  • Jung, Hyun-Ju;Rhee, Shin-Hyung;Song, Mu-Seok;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • A numerical investigation was performed based on the Reynolds-Averaged Navier-Stokes(RANS) equations for the two-dimensional unsteady flow around a vertical axis turbine(VAT) with three or four blades. VAT is one of the promising devices for tidal current energy conversion. The geometry of the turbine blade was $NACA65_3$-018 airfoil, for which CFD analysis using Fluent was carried out at several angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Then CFD simulations were carried out for the whole vertical axis turbine with a two-dimensional setup. The CFD simulation demonstrated the usefulness of the method to study the typical unsteady flows around VATs and the results showed that the optimum turbine efficiency could be achieved for carefully selected combinations of the number of blade and Tip-Speed Ratio(TSR).

  • PDF

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

Effects of Time-Varying Mass on the Dynamic Behavior of a Descending Parachute System (질량 감소가 낙하산 시스템의 하강 고도 변화에 미치는 효과)

  • Jang, Woo-Young;Baek, Sang-Tae;Myong, Rho-Shin;Jin, Yeon-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Accurate prediction of the trajectory and time of a time-varying mass parachute system remains essential in the mission requiring a precision airdrop to the ground. In this study, we investigate the altitude-varying behavior of a cross-type parachute system designed to deliver a time-varying mass object like flare. The dynamics of the descending parachute system was analyzed based on the Runge-Kutta method of the ordinary differential system. The drag coefficients of the cross-type parachute and flare were calculated by a CFD code based on the incompressible Navier-Stokes equation. Finally, by using a simplified gust wind model in troposphere, the combined effects of gust wind and time-varying mass were examined in detail.

Study on Surface Vortices in Pump Sump

  • Long, Ngo Ich;Shin, Byeong Rog;Doh, Deog-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.60-66
    • /
    • 2012
  • One of commonly physical phenomena encountered in pump sump systems in which its significant influence to the hydraulic performance of pump system plays an important role in the field of fluid engineering, is the appearance of free surface and submerged vortices. In this paper, a study of the vortices behavior and their formative mechanism of asymmetry is considered in this paper by using numerical approach. The Reynolds-Averaged Navier-Stokes (RANS) equations and k-omega Shear Stress Transport turbulence model used to describe the properties of turbulent flows, in company with VOF multiphase model, are implemented by Fluent code with multi-block structured grid system. In the numerical simulation, the calculated elevation of air-water interface and vortex core contours are used to classify visually surface vortices as well as submerged vortices. It is shown that the free surface vortex is identified by the concavity of liquid region from the free surface and swirling flow at that own plane. To investigate the distinctive behavior of these vortices corresponding to each given flow rate at the same water level, some numerical testing of them are considered here in such a manner that the flow pattern of surface vortex are obtained similarly to the obtained results from experiment. Furthermore, the influence due to the change of grid refinement and the variation of depth of the concavity are also considered in this paper. From that, these influential factors will be implemented to design a good pump sump with higher performance in the future.

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.