• Title/Summary/Keyword: Natural working fluid

Search Result 63, Processing Time 0.027 seconds

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS IN A CANISTER WITH HORIZONTAL INSTALLATION OF DUAL PURPOSE CASK FOR SPENT NUCLEAR FUEL

  • Lee, Dong-Gyu;Park, Jea-Ho;Lee, Yong-Hoon;Baeg, Chang-Yeal;Kim, Hyung-Jin
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.969-978
    • /
    • 2013
  • A full-sized model for the horizontally oriented metal cask containing 21 spent fuel assemblies has been considered to evaluate the internal natural convection behavior within a dry shield canister (DSC) filled with helium as a working fluid. A variety of two-dimensional CFD numerical investigations using a turbulent model have been performed to evaluate the heat transfer characteristics and the velocity distribution of natural convection inside the canister. The present numerical solutions for a range of Rayleigh number values ($3{\times}10^6{\sim}3{\times}10^7$) and a working fluid of air are further validated by comparing with the experimental data from previous work, and they agreed well with the experimental results. The predicted temperature field has indicated that the peak temperature is located in the second basket from the top along the vertical center line by effects of the natural convection. As the Rayleigh number increases, the convective heat transfer is dominant and the heat transfer due to the local circulation becomes stronger. The heat transfer characteristics show that the Nusselt numbers corresponding to $1.5{\times}10^6$ < Ra < $1.0{\times}10^7$ are proportional to 0.5 power of the Rayleigh number, while the Nusselt numbers for $1.0{\times}10^7$ < Ra < $8.0{\times}10^7$ are proportional to 0.27 power of the Rayleigh number. These results agreed well with the trends of the experimental data for Ra > $1.0{\times}10^7$.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

  • Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.

PIV Measurement of Natural Convection in a Square Partitioned Enclosure (격판이 존재하는 정사각형 밀폐공간내의 자연대류에 대한 PIV 계측)

  • Kim, Kwang-Hee;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.708-713
    • /
    • 2001
  • The paper presented some results of a experimental study of natural convection in partitioned 2D square enclosure. The square enclosure consist of two adiabatic vertical walls and the upper cold and the lower hot walls. A partition is positioned perpendicularly at the center of left vertical insulated wall The PIV mesaurements were performed with the variations of the partition length and inclination of enclosure. The working fluid is water with a Prandtl number of 6.996 at $20^{\circ}C$ temperature. A captured images were calculated by using a Cross-Correlation(Multi-frame/Single-exposure) method.

  • PDF

The Numerical Analysis of Performance of the Stirling Cryocooler (선형압축기형 스터링 냉동기의 운전특성에 관한 수치해석적 연구)

  • 홍용주;박성제;김효봉;염한길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.181-184
    • /
    • 2002
  • The purpose of this study is to analysis the charging gas effect on the resonance and performance characteristics of the linear compressor for small scale FPFD Stirling refrigerator. To ensure high performance of FPFD type Stirling refrigerator, the operating frequency of the refrigerator should be around the natural frequency of compressor. The gas spring effect which is induced from pressure change in cylinder due to motion of pistons has significant effect on the natural frequency of the compressor. The numerical results show the linear compressor has high natural frequency when the charging pressure of working fluid is high.

  • PDF

Numerical investigation of natural convection heat loss in solar receiver for dish concentrating system (접시형 태양열 집광시스템용 흡수기의 자연대류 열손실 수치해석 연구)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Kim, Jong-Kyu;Kim, Jin-Soo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.680-683
    • /
    • 2007
  • In dish concentrating system, natural convection heat loss occurs in cavity receiver. Heat loss mechanisms of conduction, convection, and radiation can reduce the system efficiency. To obtain the high efficiency, the receiver is to absorb the maximum of solar energy and transfer to the working fluid with maximum of heat losses. The convection heat loss is an important factor to determine the system performance. Numerical analysis of the convection heat loss of receiver was carried out for varing inclinaton angle from 0$^{\cdot}$ to 70$^{\cdot}$ with temperature range from 400$^{\cdot}C$ to 600$^{\cdot}C$ using the commercial software package, Fluent 6.0. The result of numerical analysis was comparable with convection heat loss model of solar receiver.

  • PDF

Numerical Analysis of Performance of Linear Compressor for the Stilting Cryocooler (스터링 냉동기의 선헝압축기 운전특성에 관한 수치해석적 연구)

  • 홍용주;박성제;김효봉;염한길;최영돈
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.58-62
    • /
    • 2002
  • The purpose of this study is to analyze the charging gas effect on the resonance and performance characteristics of the linear compressor for small scale FPFD Stirling refrigerator. To ensure high performance of FPFD type Stirling refrigerator, the operating frequency of the refrigerator should be around the natural frequency of compressor. The gas spring effect which is induced from Pressure change in cylinder due to motion of pistons has significant effect on the natural frequency of the compressor. The numerical results show the linear compressor has high natural frequency when the charging pressure of working fluid is high and the stroke of compressor, current, input power and efficiency of compressor were shown with different operating conditions.

Experimental Study for Natural Convection Flow in an Inclined Partitioned Square Enclosure (격판이 존재하는 경사진 정사각형 밀폐공간 내의 자연대류유동에 관한 실험적 연구)

  • Kim, Gwang-Hui;Kim, Yu-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.310-317
    • /
    • 2002
  • In the present study, an experimental study of natural convection in a partitioned 2D square enclosure has been carried out. The square enclosure consist of two adiabatic vertical walls and the upper cold and the lower hot walls. A partition is positioned perpendicularly at the center of the left vortical insulated wall. The PIV measurements were performed with the variations of Rayleigh number, partition length and inclination of the enclosure. The working fluid is water with Prandtl number of 6.996 at 20$\^{C}$. The captured images were analyzed by using a cross-correlation (two-frame/single-exposure) PIV method.

Basic Static Characteristics of a Closed and a Regeneration Cycles for the OTEC System (해양온도차발전 Closed and Regeneration Cycle의 기본 정특성)

  • Cha, Sang-Won;Kim, You-Taek;Mo, Jang-Oh;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1151-1157
    • /
    • 2012
  • Ocean Thermal Energy Conversion(OTEC) technology is one of the new and renewable energy that utilizes the natural temperature gradient that exists in the tropical ocean between warm surface water and the deep cold water, to generate electricity. The selection of working fluid and the OTEC cycle greatly influence the effect on the system operation, and it's energy efficiency and impacts on the environment. Working fluids of the OTEC are ammonia, R22, R407C, and R410A. In this paper, we compared boiling pressure to optimize OTEC system at $25^{\circ}C$. Also, this paper showed net-power and efficiency according to working fluids for closed cycle and regeneration cycle.