• Title/Summary/Keyword: Natural respiration

Search Result 99, Processing Time 0.023 seconds

The Physiological Effects of Controlled Respiration on the Electroencephalogram (호흡유도(呼吸誘導)에 따른 전두부(前頭部) 뇌파(腦波)에 관한 연구(硏究))

  • Kim, Hye-Kyung;Shin, Sang-Hoon;Nam, Tong-Hyun;Park, Yong-Jae;Hong, In-Ki;Lee, Dong-Hoon;Lee, Sang-Chul;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.10 no.1
    • /
    • pp.109-140
    • /
    • 2006
  • Background: In practicing qigong, People must achieve three Points : adjust their Posture, control their breathing and have a peace of mind. That is, Cho-Sin [調身] , Cho-Sik [調息] , Cho-Sim [調心] . Slow respiration is the important pattern of respiration to improve the human health. However, unsuitable breathing training have been occurred to mental disorder such as insomnia, anorexia etc. So, we think that the breathing training to consider the individual variations are desired. Objectives: We performed this study to examine the physiological effects of controlled respiration on the normal range of frequency domain electroencephalogram(EEC) in healthy subjects Also, to study examine individual variations according to the physiological effects between controlled respiration and Han-Yeol [寒熱] , respiration period, gender and age-related groups on the EEC in healthy subjects. Methods: When the subjects controlled the time of breathing (inspiration and expiration time) consciously, compared with natural respiration, and that their physiological phenomena are measured by EEC. In this research we used breathing time as in a qigong training (The Six-Word Excise) and observed physiological phenomena of the controlled natural respiration period with the ratio of seven to three(longer inspiration) and three to seven(longer expiration) . We determined, heat-cold score by Han-Yeol [寒熱] questionnaire, average of natural respiration period, according to decade, EEC of 140 healthy subjects (14 to 68 years old; 38 males, 102 females) by means of alpha, beta spectral relative power. Results: 1) In Controlled respiration compared with the natural respiration, ${\alpha}\;I\;(Fp2)\;and\;{\beta}$ I (Fpl, Fp2, F3, F4) decreased on the EEC. 2) In controlled respiration compared with the natural respiration, ${\beta}$ I (Fpl, Fp2, F3, F4) increased with cold group, ${\alpha}/{\beta}$(F3) decreased with heat group, ${\alpha}$ I (Fp2)increased with cold group in longer inspiration. But by means of compound effects, ${\alpha}$ II(F3) increased with cold group in longer inspiration, the other side ${\alpha}$ I (F3) decreased with heat group in controlled respiration on the EEC. 3) In controlled respiration compared with the natural respiration, ${\alpha}$ I (Fp2) decreased with decreased-respiratory-rate(D.R.R.) group, ${\beta}$ I (Fpl, Fp2, F3, F4) increased with D.R.R. and D.R.R. groups, ${\alpha}/{\beta}$(F3) decreased with D.R.R. group. But by means of compound effects, in controlled respiration compared with the natural respiration, ${\alpha}/{\beta}$(F3) decreased with D.R.R. group on the EEG. 4) In controlled respiration compared with the natural respiration, ${\beta}$ I (Fpl, F3, F4) increased with female cup, ${\beta}$ I (Fp2) increased with male and female groups, ${\alpha}/{\beta}$(F3) decreased with male group. But by means of compound effects, in controlled respiration compared with the natural respiration, ${\alpha}$ I (Fp2) increased with female group on the EEC. 5) Compared with the natural respiration, in longer expiration ${\alpha}$ I (Fp2) increased in their forties group, in longer inspiration ${\alpha}$ I (Fp2) increased in their fifties group. But by means of compound effects, in controlled respiration compared with the natural respiration, ${\beta}$ I (Fpl) decreased in teens group on the EEG.

  • PDF

The Effect of Controlled Respiration on the Impedance Cardiography and the Second Derivative of PhotoPlethysmography (호흡 제어에 따른 임피던스 심장도와 지첨용적맥파에 관한 연구)

  • Ko, Young-Il;Park, Young-Bae;Park, Young-Jae;Lee, Hyon-Soo
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.1
    • /
    • pp.82-104
    • /
    • 2007
  • Purpose: We performed this study to examine the effect of controlled respiration on cardiovascular system in healthy adult subjects using impedance cardiography and photoplethysmography. Materials and Methods: This study had performed on 74 subjects, which were healthy men and women without a experience of respiration practice. Using the instruments for impedance cardiography and photoplethysmography, parameters of each subject had been measured after each controlled respirations which were natural respiration, controlled natural respiration (I:E=1.1.6), longer inspiration(I:E=3:3), and longer expiration(I:E=2:4). The measured parameters of impedance cardiography and photoplethysmography were processed statistically by one-way repeated ANOVA. Results: 1. HR and CI of impedance cardiography were decreased significantly during controlled respiration comparing with the result of basal state(the state of enough break). There was no significant difference among the results of controlled respiration. 2. PEP of impedance cardiography had no significant difference among the result of basal state and the results of controlled respiration(p=0.059). 3. VI of impedance cardiography had significant differences among the result of basal state and the results of controlled respiration, and decreased continuously through the controlled respiration. 4. b/a of photoplethysmography had no significant difference among the result of basal state and the results of controlled respiration(p=0.554). 5. c/a of photoplethysmography were decreased significantly during controlled respiration comparing with the result of basal state. There was no significant difference among the results of controlled respiration. 6. d/a of photoplethysmography had significant differences among the results of the controlled respiration decreasing continuously through the controlled respiration and had no significant difference between the result of basal state and the result of natural respiration. 7. AGI of photoplethysmography had significant differences among the result of basal state and the results of the controlled respiration increasing continuously through the controlled respiration. Conclusion: We had examined the effects of controlled respirations on cardiovascular system in multiple points of view. The effects of controlled respirations on cardiovascular system can't be explained in a simple way, as the cardiovascular system is controlled by many factors. Therefore, more physiological parameters must be measured in the future study on the effect of the controlled respiration on human cardiovascular system.

  • PDF

The Effect of Rain Fall Event on $CO_2$ Emission in Pinus koraiensis Plantation in Mt. Taehwa (강우 이벤트가 태화산 잣나무 식재림의 각 발생원별 $CO_2$ 발생량에 미치는 영향)

  • Suh, Sanguk;Park, Sungae;Shim, Kyuyoung;Yang, Byeonggug;Choi, Eunjung;Lee, Jaeseok;Kim, Taekyu
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.389-394
    • /
    • 2014
  • This study was conducted to find out the soil $CO_2$ emission characteristic due to rain fall pattern and intensity changes. Using Automatic Opening and Closing Chambers (AOCCs), we have measured annual soil respiration changes in Pinus koraiensis plantation at Seoul National University experimental forest in Mt. Taehwa. In addition, we have monitored heterotrophic respiration at trenching sites ($4{\times}6m$). Based on the one year data of soil respiration and heterotrophic respiration, we observed that 24% of soil respiration was derived from root respiration. During the rainy season (end of July to September), soil respiration at trenching site and trenching with rainfall interception site were measure during portable soil respiration analyzer (GMP343, Vaisala, Helsinki, Finland). Surprisingly, even after days of continuous heavy rain, soil water content did not exceed 20%. Based on this observation, we suggest that the maximum water holding capacity is about 20%, and relatively lower soil water contents during the dry season affect the vital degree of trees and soil microbe. As for soil respiration under different rain intensity, it was increased about 14.4% under 10 mm precipitation. But the high-intensity rain condition, such as more than 10 mm precipitation, caused the decrease of soil respiration up to 25.5%. Taken together, this study suggests that the pattern of soil respiration can be regulated by not only soil temperature but also due to the rain fall intensity.

Spatio-Temporal Variation of Soil Respiration and Its Association with Environmental Factors in Bluepine Forest of Western Bhutan

  • Cheten Thinley;Baghat Suberi;Rekha Chhetri
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.13-19
    • /
    • 2023
  • We investigated Soil respiration in Bluepine forest of western Bhutan, in relation to soil temperature, moisture content and soil pH and it was aimed at establishing variability in space and time. The Bluepine forest thrives in the typical shallow dry valleys in the inter-montane Bhutan Himalaya, which is formed by ascending wind from the valley bottom, which carries moisture from the river away to the mountain ridges. Stratified random sampling was applied and the study site was classified into top, mid, low slope and further randomized sample of n=20 from 30 m×30 m from each altitude. The overall soil respiration mean for the forest was found 2248.17 CO2 g yr-1 and it is ~613.58 C g yr-1. The RS from three sites showed a marginal variation amongst sites, lower slope (2,309 m) was 4.64 μ mol m-2 s-1, mid slope (2,631 m) was 6.78 μ mol m-2 s-1 and top slope (3,027 m) was 6.33 μ mol m-2 s-1 and mean of 5.92 μ mol m-2 s-1, SE=0.25 for the forest. Temporal distribution and variations were observed more pronounced than in the space variation. Soil respiration was found highest during March and lowest in September. Soil temperature had almost inverse trend against soil respiration and dropped a low in February and peak in July. The moisture in the soil changed across months with precipitation and pH remained almost consistent across the period. The soil respiration and soil temperature had significant relationship R2=-0.61, p=0.027 and other variables were found insignificant. Similar relationship are reported for dry season in a tropical forest soil respiration. Soil temperature was found to have most pronounced effect on the soil respiration of the forest under study.

Belowground Carbon Allocation of Natural Quercus mongolica Forests Estimated from Litterfall and Soil Respiration Measurements (Litterfall과 토양호흡 측정에 의한 신갈나무 천연림의 지하부 탄소 분배)

  • Yi Myong-Jong;Son Yowhan;Jin Hyun-O;Park In-Hyeop;Kim Dong-Yeop;Kim Yong-Suk;Shin Dong-Min
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.227-234
    • /
    • 2005
  • From published data of mature forests worldwide, Raich and Nadelhoffer suggested that total belowground carbon allocation (TBCA) could be estimated from the difference between annual rates of soil respiration and aboveground litterfall. Here we analyze new measurements of IRGA-based soil respiration and litterfall of natural mature oak forests dominated by Quercus mongolica in Korea. Rates of in situ soil respiration and aboveground litter production are highly and positively correlated. Our results disagree with the Raich and Nadelhoffer model far world forests. A regression analysis of the data from Q. mongolica forests produced the following relationship: annual soil respiration : 141 + 2.08 ${\times}$ annual litterfall. The least squares regression line has a more gentle slope (2.08) than the slope (2.92) described by Raich and Nedelhoffer for mature forests worldwide. The regression slope of our study indicates that, on average, soil respiration is about two times the aboveground litterfall-C, which further implies that TBCA is similar with annual aboveground litterfall-C at natural Q. mongolica forests in Korea. The non-zero Y-intercept (141) of the regression indicates that TBCA may be greater than litterfall-C where litterfall rate are relativery low. Over a gradient of litterfall-C ranging from 200-370 g C $m^{-2}yr^{-l}$, TBCA increased from 350-530 g C $m^{-2}yr^{-l}$.

Experimental Estimation of the Effect of Rainfall Interception on Soil Respiration in a Broad-leaved Deciduous Forest in Western Japan (일본 서부 낙엽활엽수림의 차단 강수가 토양호흡에 미치는 영향 평가)

  • Tamai, Koji
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.247-251
    • /
    • 2009
  • To estimate the effect of rainfall on soil respiration, soil $CO_2$ efflux was measured with a manipulation of rainfall interception at a broad-leaved deciduous forest in western Japan from 20 February to 19 November 2001. The diurnal patterns of soil respiration observed at the intercepted subplot ($F_c$) were quite similar to those of soil temperature at 0.2 m depth with a maximum around midnight and a minimum from noon to early afternoon. Such diurnal patterns have not been observed in the previous studies at the same study site under natural conditions (which manifested no clear diurnal variations). Furthermore, the magnitudes of $F_c$ showed substantial differences (e.g., ~50% reduction under water-limited conditions) compared to those of the potential soil respiration under natural conditions ($F_{cal}$). These findings demonstrate that rainfall events not only affected the magnitude of soil $CO_2$ efflux but also modified the vertical structure of soil temperature, thereby altering diurnal patterns of soil respiration.

Effects of Intra-abdominal Pressure with Visual Feedback on Muscle Activation of Upper Trapezius and Sternomastoid during Forced Inspiration in Individuals with Costal Respiration

  • Kim, Kwang-Su;Shin, Hwa-Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.2
    • /
    • pp.75-79
    • /
    • 2020
  • Purpose: This study analyzed the immediate effects of intra-abdominal pressure with visual feedback on the muscle activation of the upper trapezius and sternomastoid during natural inspiration and forced inspiration in individuals with costal respiration. Methods: The eighteen individuals with upper costal breathing pattern participated in this study. Surface electromyography was used to analyze the muscle activity of the upper trapezius and sternomastoid during natural inspiration and forced inspiration before and after intra-abdominal pressure. Results: A significant difference in muscle activation was observed with the muscle type, inspiration type, and test session (p<0.05). The muscle activities of the sternomastoid and upper trapezius decreased significantly during forced inspiration after intra-abdominal pressure training (p<0.05). On the other hand, there was no significant difference during natural inspiration in both muscles (p>0.05). A comparison of the difference between the pre-test and post-test during forced inspiration revealed the upper trapezius to be significantly larger than the sternomastoid (p<0.05). No significant difference was noted during natural inspiration (p>0.05). Conclusion: The intra-abdominal pressure has positive effects on correcting the breathing patterns in individuals with costal respiration.

Morphology and Histochemistry of the Skin of the Mud Loach, Misgurnus mizolepis, in Relation to Cutaeneous Respiration

  • Park, Jong-Young;Kim, Ik-Soo;Kim, So-Young
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.303-308
    • /
    • 2001
  • The skin structure of Misgurnus mizolepis was studied based on the microanatomical investigation of skin fragments taken from four regions. The epidermis was distinguished by two types of skin glands, a small mucous cell and a large club cell. The mucous cell was acid sulfomucins (some sialomucins) but the club cell did not give any histochemical tests for mucosubstances. The presence of a well defined lymphatic system with small lymphocytes was established in the stratum germinativum layer of the epidermis. A large number of blood capillaries run very close to each other just below the basement membrane, and a definite area giving AB and PAS positive was present between the basement membrane and scale. These structural features of skin in M. mizolepis seem to be closely related with cutaneous respiration.

  • PDF

The Effects of Paced Breathing in Specific Respiration Rate on Heart Rate Variability (특정 호흡수에서 행한 통제호흡이 심박변이도에 미치는 영향)

  • Kim, Ji-Hwan;Kim, Byoung-Soo;Park, Seong-Sik;Lee, Yong-Jae;Keum, Na-Rae;Bae, Hyo-Sang
    • Journal of Sasang Constitutional Medicine
    • /
    • v.28 no.2
    • /
    • pp.123-131
    • /
    • 2016
  • Objectives We observed what effects of Paced Breathing(PB) in specific respiration rate have on heart rate variability (HRV) according to Sasang Constitution.Methods HRV of 72 healthy participants in sitting position was recorded while they carried out usual breathing, 0.2Hz, 0.1Hz, and 0.05Hz PB each 5 minutes in consecutive order. Five minute of relaxation was permitted between each breathing. Finally, HRV indices were statictically analyzed of 32 participants (SOEUM: 11, SOYANG: 10, TAEEUM: 11) after data out of accord with respiration rate or outliers were excluded.Results and Conclusions According to respiration rates, there was no statistical significance of HRV among Sasang Constitution. Regardless of Sasang Constituion, 0.2Hz PB increased mean heart rate and decreased natural logarithmic low frequency(lnLF) oscillation of HRV without the change of natural logarithmic high frequency(lnHF), while 0.1Hz PB increased lnLF and standard deviation of N-N interval(SDNN), and slightly decreased lnHF without the change of mean heart rate. 0.05 Hz PB also showed the same effect as 0.1Hz PB, but was impracticable.

A simple estimate of the carbon budget for burned and unburned Pinus densiflora forests at Samcheok-si, South Korea

  • Lim, Seok-Hwa;Joo, Seung Jin;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.281-291
    • /
    • 2015
  • To clarify the effects of forest fire on the carbon budget of a forest ecosystem, this study compared the seasonal variation of soil respiration, net primary production and net ecosystem production (NEP) over the year in unburned and burned Pinus densiflora forest areas. The annual net carbon storage (i.e., NPP) was $5.75t\;C\;ha^{-1}$ in the unburned site and $2.14t\;C\;ha^{-1}$ in the burned site in 2012. The temperature sensitivity of soil respiration (i.e., $Q_{10}$ value) was higher in the unburned site than in the burned site. The annual soil respiration rate was estimated by the exponential regression equation with the soil temperatures continuously measured at the soil depth of 10 cm. The estimated annual soil respiration and heterotrophic respiration (HR) rates were 8.66 and $4.50t\;C\;ha^{-1}yr^{-1}$ in the unburned site and 4.08 and $2.12t\;C\;ha^{-1}yr^{-1}$ in the burned site, respectively. The estimated annual NEP in the unburned and burned forest areas was found to be 1.25 and $0.02t\;C\;ha^{-1}yr^{-1}$, respectively. Our results indicate that the differences of carbon budget and cycling between both study sites are considerably correlated with the losses of living plant biomass, insufficient nutrients and low organic materials in the forest soil due to severe damages caused by the forest fire. The burned Pinus densiflora forest area requires at least 50 years to attain the natural conditions of the forest ecosystem prior to the forest fire.