• Title/Summary/Keyword: Natural load

Search Result 1,185, Processing Time 0.026 seconds

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

Structural Analysis of Sinusoidal Vibration Load for Liquid Rocket Engine System (액체로켓엔진 시스템 정현파 진동 구조해석)

  • Chung, Yong-hyun;Lee, Eun-seok;Park, Soon-young;Yang, Chang-hwan;Jung, Jin-taeg
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.20-23
    • /
    • 2009
  • The structural analysis of liquid rocket engine was performed in the case of sinusoidal vibration load to verify structural safety. The finite element model is composed with main liquid rocket engine components, combustion chamber, turbopump, gas-generator, pyro-starter, main pipes, main valve, heat-exchanger, gimbal-mount and brackets. Natural vibration mode analysis and structural analysis for sinusoidal vibration load were performed. The natural mode frequency of liquid rocket engine is twice than that of launch vehicle. In the case of stress result of sinusoidal vibration load, the part of maximum stress has 1.4 margin, so the engine structure is safe for sinusoidal vibration load.

  • PDF

Optimum Structural Design of a Triaxial Load Cell for Wind Tunnel Test (풍동용 3 축 로드셀의 구조최적설계)

  • Lee, Jae-Hoon;Song, Chang-Kon;Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.226-232
    • /
    • 2011
  • In this study, an optimized design of a triaxial load cell has been developed by the use of finite element analysis, design of experiment and response surface method. The developed optimal design was further validated by both stress-strain analysis and natural vibration analysis under an applied load of 30 kgf. When vertical, horizontal, and axial loads of 30 kgf were applied to the load cell with the optimal design, the calculated strains were satisfied with the required strain range of $500{\times}10^{-6}{\pm}10%$. The natural vibration analysis exhibited that the fundamental natural frequency of the optimally designed load cell was 5.56 kHz and higher enough than a maximum frequency of 0.17 kHz which can be applied to the load cell for wind-tunnel tests. The satisfactory sensitivity in all triaxial directions also suggests that the currently proposed design of the triaxial load cell enables accurate measurements of the multi-axial forces in wind-tunnel tests.

A FINITE ELEMENT STRESS ANALYSIS OF THE STRESS DISTRIBUTION AND THE SHOCK ABSORPTION IN AN OSSEOINTEGRATED IMPLANT-NATURAL TOOTH SUPPORTED FIXED PARTIAL DENTURE (골유착성 임프란트와 자연치를 이용한 고정성 국소의치에서 응력분산 및 충격흡수에 관한 유한요소법적 응력분석)

  • Jeong Chang-Mo;Lee Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.582-610
    • /
    • 1992
  • The long-term success of any dental implant is dependent upon the optimization of stresses which occur during oral function and parafunction. Especially, it has been suggested that there is an unique set of problems associated with joining an osseointegrated implant and a natural tooth with a fixed partial denture. For this particular case, although many literatures suggest different ways to avoid high stress concentrations on the bone surrounding the implant under static and dynamic loading conditions, but few studies on the biomechanical efficacy of each assertion have been reported. The purpose of this investigation was to evaluate the efficacies of clinically suggested methods on stress distribution under static load and shock absorption under dynamic load, using two dimensional finite element method. In FEM models of osseointegrated implant-natural tooth supported fixed partial dentures, calculations were made on the stresses in surrounding bone and on the deflections of abutments and superstructure, first, to compare the difference in stress distribution effects under static load by the flexure of fastening screw or prosthesis, or intramobile connector, and second, to compare the difference in the shock absorption effects under dynamic load by intramobile connector or occlusal veneering with composite resin. The results of this analysis suggest that : 1. Under static load condition, using an implant design with fastenign screw connecting implant abutment and prosthesis or increasing the flexibility of fastening screw, or increasing the flexibility of prosthesis led to the .increase in height of peak stresses in cortical bone surrounding the implant, and has little effect on stress change in bone around the natural tooth. 2. Under static load condition, intramobile connector caused the substantial decrease in stress concentration in cortical bone surrounding the implant and the slight increase in stress in bone around the natural tooth. 3. Under dynamic load condition, both intramobile connector and composite resin veneering showed shock absorption effect on bone surrounding the implant and composite resin veneering had a greater shock absorption effect than intramobile connector.

  • PDF

A Experimental study on natural frequency measurement of passenger car tire under the load and rotation (하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구)

  • 김병삼;홍동표;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF

A Study on Stress Corrosion Behaviors in Welded Zone of the API 5L-X65 Steel for Natural Gas Transmission (천연가스 수송용 API 5L-X65강 용접부의 부식거동에 관한 연구)

  • JO SANG-KEUN;SONG HAN-SEOP;KONG YOO-SIK;KIM YUONG-DAI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.401-407
    • /
    • 2004
  • This study is on the constant-current stress corrosion test related to the load stress in welded zone and non-welded zone of high tensile strength steel for natural gas transmission. The surface corrosion pattern of the welded zone of API 5L-X65 specimens for natural gas transmission showed global corrosion and narrow pitting, and the pitting was increased by increasing the load stress. Initially, the average relative electrode potential and the average relative current of the high tensile strength steel for natural gas transmission specimens was decreased suddenly, and the average relative electrode potential was higher and the average relative current was lower in welded zone than base metal. and the average relative electrode potential was decreased by increasing the load stress, and the average relative current was somewhat increased by increasing the load stress. The corrosion rate was less in welded zone than base metal, and the corrosion rate was decreased by increasing the load stress.

  • PDF

On Corrosion Behaviors in Welded Zone of API 5L-X65 Steel for Natural Gas Transmission (천연가스 수송용 API 5L-X65강 용접부의 부식거동에 관한 연구)

  • JO SANG-KEUN;SONG HAN-SEOP;KONG Yu-SIK;KIM YOUNG-DAI
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.50-56
    • /
    • 2004
  • This study is on the constant-current stress corrosion test, related to the load stress, in both the welded and non-welded zones of high tensile strength steel that is used for natural gas transmission. The surface corrosion pattern of the welded zone of API 5L-X65 specimens for natural gas transmission showed general corrosion and narrow pitting, and the pitting was increased with load stress. Initially, the average relative electrode potential and the average relative current of the high tensile strength steel, used for natural gas transmission specimens, were decreased rapidly, and the average relative electrode potential was higher and the average relative current was lower in welded zone, compared to base metal. The average relative electrode potential was decreased with load stress, and the average relative current was somewhat increased by increasing the load stress. The corrosion rate was less in welded zone, compared to base metal, and the corrosion rate was decreased by increasing the load stress.

3-DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE INFRAOCCLUSION OF FIXED IMPLANT PROSTHESIS FOR PARTIAL EDENTULISM (부분 무치악의 고정성 임플랜트 보철의 저위교합에 관한 3차원 유한요소법적 연구)

  • Kim, In-Seob;Choi, Choong-Kug;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.632-649
    • /
    • 1996
  • The purpose of this study was to examine, by the method of 3-dimentional finite element analysis. how infraocclusion affected the stress distribution in surrounding bone and osseointegrated prosthesis. The 3-dimentional finite element mandibular models were made, in which the first and second molars were removed and the two osseointegrated implants were placed in the first and second molar sites and implant supported fixed prostheses were constructed. Analysis of equivalent stress and displacement induced by strong occlusion or infraocclusion was performed under vertical or inclined distributed loads. The results were as follows; 1. Under vertical load of 50N or 500N, the model in which infraocclusion had not been allowed showed greater stress on implants and the supporting bone than on natural teeth. 2. In the model in which infraocclusion of $30{\mu}m$ had been allowed, implant-prosthesis on the molars had no contact with opposing teeth under vertical load of 50N, However with the same allowed infraocclusion and the model under vertical load of 500N, implant prosthesis on the second molar had contact with opposing teeth, and stress distribution occured properly on natural teeth and implants. 3. Under $45^{\circ}$ inclined load, the model in which infraocclusion had not been allowed showed greater stress on implants and the supporting bone than on natural teeth. There was greater stress in the case of $45^{\circ}$ inclined load than in the case of vertical load. 4. Under $45^{\circ}$ inclined load of 50N or 500N, the model in which infraocclusion of $30{\mu}m$, had been allowed showed no occlusal contact on the implants and occlusal contact on the natural teeth. 5. In partially edentulous cases with implant supported prosthesis, we can prevent excessive load on implants by allowing infraocclusion.

  • PDF

A Study on the Environmental Load of Office Buildings in Seoul

  • Lee, Sang-Hyung;Lee, Yun-Gyu;Yang, Kwan-Seob;Ahn, Tae-Kyung;Lee, Seung-Eon;Park, Hyo-Soon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.58-64
    • /
    • 2001
  • This study is to examine the emission quantity of $CO_2$ gas as the environmental load in office buildings. After the investigation of monthly consumption of each energy source(electricity and natural gas), it is analyzed that the $CO_2$ emission quantity of 34 office buildings surveyed is 22.4 kg-c/$m^2$-year, which consists of 17.5 kg-c/$m^2$-year by consurunlelectncif. and 4.9 kg-c/$m^2$-year by consuming natural gas. And the $CO_2$ emission quantity of each load in those buildings consists of 68% emitted by general electricity, 16% by cooling load and 16% by beating load. It is also proposed that the $CO_2$ emission quantity of cooling and heating load is profoundly pertinent to the variation of outdoor temperature.

  • PDF

A study on the environmental load of office buildings in Seoul (서울지역 사무소 건물의 환경부하에 관한 연구)

  • 이상형;이윤규;양관섭;안태경;이승언;박효순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.244-249
    • /
    • 1999
  • This study is to examine the emission rate of $CO_2$gas as the environmental load in office buildings. After the investigation of monthly consumption of each energy source(electricity and natural gas), it is analyzed that the $CO_2$emission rate of 34 office buildings surveyed is 22.4kg-$c/m^2$.year, which consists of 17.5kg-$c/m^2$.year by consuming electricity, and 4.9kg-$c/m^2$.year by consuming natural gas. And the $CO_2$emission rate of each load in those buildings consists of 68% emitted by general electricity, 16% by cooling load and 16% by heating load. It is also proposed that the $CO_2$emission rate of cooling and heating load is profoundly pertinent to the variation of outdoor temperature.

  • PDF